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1 GGM Estimation Example

In this supplement, we will detail the steps used in maximum likelihood estimation of a
Gaussian graphical model (GGM) for a small example. Suppose that a dataset of three
variables with 1,000 observations gives the following sample correlation matrix:

RRR =

 1 0.31 −0.09
0.31 1 −0.23
−0.09 −0.23 1

 .
Given that there are three variables, there are 3 · 2/2 = 3 potential parameters in the
GGM, leading to the model parameters θθθ> =

[
ω21 ω31 ω32

]
. We first wish to estimate

a saturated GGM in which all parameters are included. The manual Jacobian then
becomes an identity matrix:

∂θθθ

∂ψψψ
=


ψ1 ψ2 ψ3

ω21 1 0 0
ω31 0 1 0
ω32 0 0 1

.
This matrix encodes a model in which the free parameters (parameters to be estimated)
are ψ1 = ω21, ψ2 = ω31, and ψ3 = ω32. Next, we could estimate the parameters by
minimizing Equation (2) (finding a solution on which Equation (3) is a vector of zeroes).
For the saturated model, however, we don’t have to perform iterative model search and
can obtain ML estimates directly by standardizing the inverse of RRR and multiplying off-
diagonal elements with −1 (Epskamp, Waldorp, et al., 2018; Lauritzen, 1996). This
process is automated in, for example, the cor2pcor function from the corpcor package
(Schafer et al., 2017). The ML estimate becomes:

Ω̂ΩΩ =

 0 0.30 −0.02
0.30 0 −0.21
−0.02 −0.21 0

 .
With this estimate, we can compute the parameter variance-covariance matrix in Equa-
tion (6). The square root of the diagonal of this matrix gives the standard errors 0.028,
0.032, and 0.030, which can be used to obtain the p-values in order to test whether each
edge is non-zero: ω21 < 0.01

ω31 0.52
ω32 < 0.01


The edge between the first and the third variable is not significant. Next, we could fit
a model with this edge constrained to zero. To do this, we specify the manual Jacobian
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as:

∂θθθ

∂ψψψ
=


ψ1 ψ2

ω21 1 0
ω31 0 0
ω32 0 1

.
This model encodes that we now have two parameters to estimate: ψ1 = ω21 and ψ2 =
ω32. As there is no free parameter for the edge ω31, this parameter is no longer included
in the model and its value will be fixed to its starting value (in this case, 0). All other
Jacobians have the same form as before (although numeric values will differ). Next, we
can fix this element to zero in a matrix of starting values for ΩΩΩ, and we can numerically
optimize Equation (2). We then obtain as estimates:

Ω̂ΩΩ =

 0 0.30 0
0.30 0 −0.22

0 −0.22 0

 .
Note that these estimates are slightly different also for other edges in the model. We
will term this process of removing non-significant edges and re-estimating parameters
pruning. This is the most basic form of model selection of network models.1

2 A Tutorial on GGM Estimation using psychonetrics

In this supplement, we describe how the psychonetrics package (Epskamp, 2020a, 2020b)
for the statistical programming language R (R Core Team, 2019) can be used for per-
forming the analyses described in the paper. For the single-group models there are many
other software packages that estimate pruned GGMs in which some edges are set to equal
zero. For example, the glasso (Friedman et al., 2019; Friedman et al., 2008) package can
be used to estimate a GGM for a given network structure (the regularization parameter
needs to be set to zero), which is utilized in the ggmFit function in the qgraph package
(Epskamp et al., 2012). Furthermore, the GGMnonreg (Williams et al., 2019) can be
used for ML pruning methods. More advanced ML model search strategies have also
been implemented in qgraph (the ggmModSelect routine) and GGMnonreg. Finally,
Bayesian estimation procedures have been implemented in the BDgraph (Mohammadi &
Wit, 2019) and BGGM (Williams & Mulder, 2020) packages.

First, we need to install the psychonetrics package:2

install.packages("psychonetrics")

Next, we can load the psychonetrics package as well as the qgraph package for drawing
networks and the dplyr (Wickham et al., 2019) package to gain access to the pipe operator
%>%:

1For more advanced options that utilize the estimated Fisher information matrix as discussed in this
paper, see (Epskamp, 2020a).

2Alternatively, the developmental version can be installed from Github with the command
devtools::install_github("sachaepskamp/psychonetrics").
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library("psychonetrics")
library("dplyr")
library("qgraph")

The pipe operator allows us to write f(x,...)as x %>% f(...), in which x is some
object, f some function, and ... any number of arguments. This notation simplifies
reading R code, as code can now be read from left to right rather than from inside to
outside.

2.1 Single Dataset Estimation

Suppose we have the correlation matrix described above:

corMat <- matrix(
c(1, 0.31, -0.09,
0.31, 1, -0.23,
-0.09, -0.23, 1),

nrow = 3, ncol = 3, byrow=TRUE)

and that this is based on n = 1,000 observations:

nobs <- 1000

In psychonetrics, we first need to form a model object, which is subsequently evaluated
and adjusted. The ggm function can be used to form a GGM model:

mod1 <- ggm(
covs = corMat,
nobs = nobs,
corinput = TRUE

)

The command above forms a model based on a correlation matrix as input: the covs
argument takes a single covariance (or correlation) matrix or a list of such matrices, the
nobs argument takes a single number of observations or a vector for each dataset, and
the corinput argument tells psychonetrics that the input is a correlation matrix. By
default, a model is formed in which all edges are included. For fitting a pre-specified GGM
structure, the omega argument could be supplied a binary matrix with a 1 indicating a
parameter is free and a 0 indicating a parameter is fixed to zero. Next, we can run the
model:

mod1 <- mod1 %>% runmodel

Finally, we can investigate the parameters:

mod1 %>% parameters

which gives as output:
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- omega (symmetric)
var1 op var2 est se p row col par

V2 -- V1 0.30 0.028 < 0.0001 2 1 1
V3 -- V1 -0.020 0.032 0.52 3 1 2
V3 -- V2 -0.21 0.030 < 0.0001 3 2 3

Here, the var1, op, and var2 columns indicate what type of parameter is estimated, the
est column indicates the ML estimate, the se column the standard error, the p column
the p-value (which slightly differs from above due to rounding), the row and col columns
the row and column index of the matrix, and finally the par column the parameter
number (e.g., row and column index of the Fisher information matrix). To fit a model
in which the edge V3 -- V1 is fixed to zero we can use the fixpar command:

mod2 <- mod1 %>% fixpar("omega","V1","V3") %>% runmodel

Alternatively, we could have used the prune function to automate this:

mod2 <- mod1 %>% prune(alpha = 0.05)

We can compare these models using the compare function:

compare(
saturated = mod1,
pruned = mod2

)

Which gives:

model DF AIC BIC RMSEA Chisq Chisq_diff DF_diff p_value
saturated 0 8363.84 8378.56

pruned 1 8362.24 8372.06 ~ 0 0.41 0.41 1 0.52

The output includes the AIC, BIC, and a χ2 difference test (which is only valid if the
models are nested). All these measures indicate that the pruned model fits better. Fi-
nally, to obtain the network structure, we can use the getmatrix command:

net <- getmatrix(mod2, "omega")

which can subsequently be plotted using qgraph:

qgraph(net, theme = "colorblind", layout = "spring")

2.2 Multiple Dataset ML Estimation: Fixed-effects MAGNA

Suppose we observed two more correlation matrices based on samples of 500 cases each:
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corMats <- list(
matrix(

c(1, 0.31, -0.09,
0.31, 1, -0.23,
-0.09, -0.23, 1),

nrow = 3, ncol = 3),

matrix(c(
1, 0.27, -0.01,
0.27, 1, -0.18,
-0.01, -0.18, 1),

nrow = 3, ncol = 3),

matrix(c(
1, 0.23, -0.01,
0.23, 1, -0.25,
-0.01, -0.25, 1),

nrow = 3, ncol = 3)
)

nobs <- c(1000, 500, 500)

2.2.1 Two-stage Estimation

In two-stage estimation, we first fit a model for a common correlation matrix over all
datasets. The model can be formed with the corr function:

mod_stage1 <- corr(
covs = corMats,
nobs = nobs,
corinput = TRUE,
equal = "rho"

) %>% runmodel

Setting the equal command to "rho" (PPP ) tells psychonetrics we wish to fit an equal
correlational structure (alternatively, the groupequal command could have been used
after forming the model). Typical SEM fit indices can be obtained to check if this pooled
correlational structure fits well:

mod_stage1 %>% fit

The output shows excellent fit. Next, we can obtain the pooled correlational structure:

pool_cors <- mod_stage1 %>% getmatrix("rho",group = 1)
diag(pool_cors) <- 1
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as well as the Fisher information matrix:

Fisher <- mod_stage1@information

Which can subsequently be used for the stage two model:

mod_stage2 <- ggm(
covs = pool_cors,
nobs = sum(nobs),
corinput = TRUE,
estimator = "WLS",
WLS.W = Fisher

) %>% runmodel

The estimator = "WLS" argument tells psychonetrics to use WLS estimation, and the
WLS.W argument sets the WLS weights matrix. This model can be used in exactly the
same way as the model described in section 2.1. For example, we can investigate param-
eter estimates with:

mod_stage2 %>% parameters

Which gives:

- omega (symmetric)
var1 op var2 est se p row col par

V2 -- V1 0.28 0.020 < 0.0001 2 1 1
V3 -- V1 0.013 0.022 0.56 3 1 2
V3 -- V2 -0.22 0.021 < 0.0001 3 2 3

2.2.2 Multi-dataset Estimation

For multi-dataset estimation, we can form a common model directly using the ggm func-
tion, using the same command as above but replacing corr with ggm and specifying that
now the omega matrix must be contained equal:

mod_common <- ggm(
covs = corMats,
nobs = nobs,
corinput = TRUE,
equal = "omega"

) %>% runmodel

Like before, we can look at the parameter estimates with:

mod_common %>% parameters

Which shows the exact same estimates as above.
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2.3 Multiple Dataset ML Estimation: Random-effects MAGNA

Continuing the example from Section 2.2, we can form the random-effects MAGNA model
with the meta_ggm function:

mod_ranef <- meta_ggm(
cors = corMats,
nobs = nobs,
Vmethod = "individual",
Vestimation = "per_study"

)

Here, the Vmethod argument controls how we form the VVV i matrix, which can be set
to "individual" for individual estimation of "pooled" for pooled estimation. The
Vestimation argument controls how the estimator will handle the sampling variation,
which can be set to "averaged" for averaging over all estimates or "per_study" to use
unique estimates per study. As before, we can use the runmodel and prune commands
to run and prune the model:

mod_ranef <- mod_ranef %>% runmodel %>% prune(alpha=0.05)

We can again investigate the parameters with:

mod_ranef %>% parameters

which gives (truncated):

- omega_y (symmetric)
var1 op var2 est se p row col par

V2 -- V1 0.27 0.022 < 0.0001 2 1 1
V3 -- V2 -0.21 0.020 < 0.0001 3 2 2

showing that the same edge as before was removed. All the elements of TTT are estimated
to be near zero and non-significant, indicating that there are now random effects. The
estimates of the random effect standard deviations can be obtained via:

mod_ranef %>% getmatrix("sigma_randomEffects") %>%
diag %>%
sqrt %>%
round(3)

which also show very low estimates:

[1] 0.019 0.023 0.002
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3 Full-information Maximum Likelihood

The log-likelihood function L will typically take the form of a sum of log-likelihoods for
n individual cases:

L =

n∑
c=1

Lc.

Often, L will only be a function of summary statistics from the data, and there is no need
to explicitly sum over individual likelihoods in the fit function computation. However,
there may be reasons to instead define the fit function per individual case. In the main
text, we discuss for example that the distribution may be assumed differently per case due
to each case representing a set of sample correlations with more or less sampling variation.
Another common reason for using a case-wise fit function is when some observations
are missing. When using maximum likelihood estimation, the term full information
maximum likelihood (FIML) estimation is used to describe this optimization scheme.
Here, we can define the fit function for each individual case:

F =

n∑
c=1

Fc

Fc ∝ −
2

n
Lc.

The gradient and Fisher information functions simply take the form of a sum over each
case:

∇∇∇F =
n∑
c=1

(
∂Fc
∂ψψψ

)>
III =

n∑
c=1

IIIc.

For each case-wise fit function, we may define a set of case-specific distribution pa-
rameters φφφc, which is still a function of a single set of model parameters θθθ which in
turn is still a function of a single set of free parameters ψψψ. Some datasets may feature
missing variables, leading to less distribution parameters to be needed to evaluate the
fit function. Let φφφ∗c denote a subset of φφφc containing only distribution parameters used
in the model for case c (e.g., only the means, variances and co-variances related to the
variables that are not missing for case c). We can use a filter matrix FFF c with zeroes and
ones such that:

φφφ∗c = FFF cφφφc

∂φφφ∗c
∂φφφc

= FFF c.

In the special case where no variables are missing, FFF c = III. We make use of the case-
specific distribution set φφφc and its subset φφφ∗c in two ways:
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• We can assume every case is an independent replication of the same model, but
not every case has responded to every item. In this case, all case-wise distribution
parameters are equal (φφφ1 = φφφ2 = . . . = φφφ), but the subsets φφφ∗ may differ, as
different cases may require different subsets of parameters (e.g., a person that did
not respond to item 1 does not need the mean of item 1).

• We can also assume that cases are not replications from the same model, but rather
that a different model generated each of the responses. We do this when modeling
sample correlation coefficients to take into account that samples with a low sample
size feature less sampling variation than samples with a large sample size.

The case-wise Jacobian takes the same form as Equation (4), with the exception that the
distribution Jacobian is now defined per case separately and the filter matrix is added:

∂Fc
∂ψψψ

=

(
∂Fc
∂φφφ∗c

)
FFF c

(
∂φφφc
∂θθθ

)(
∂θθθ

∂ψψψ

)
.

Likewise, the case-wise fisher function follows a similar extension:

IIIc =
1

2

(
∂θθθ

∂ψψψ

)>(∂φφφc
∂θθθ

)>
FFF>c

(
E
[
∂∇∇∇Fc
∂φφφ∗c

])
FFF c

(
∂φφφc
∂θθθ

)(
∂θθθ

∂ψψψ

)
.

The case-specific model Jacobian will take the exact same form as the general model
Jacobian when FIML is not used. The distribution Jacobian and Distribution Hessian
can be defined per individual case, and usually takes the same form of the derivatives in
the general case. No new manual Jacobian is required.

4 Empirical Example: Depression, Anxiety and Stress

For a second empirical illustration, we analyzed data of the short version of the De-
pression Anxiety Stress Scales (DASS21; Lovibond and Lovibond, 1995), which contains
21 items intended to measure depression, anxiety and stress. Table 1 gives a descrip-
tion of the variables included in the DASS21. We obtained the data from the Open
Source Psychometrics Project (openpsychometrics.org), which contained n = 39,775 full
responses (no missings) on 21 items measured on a 4-point scale. To illustrate MAGNA,
we split the data in 40 random samples (average n = 994.3). We estimated a model on
the full dataset as described in Section 3, a multi-dataset fixed-effects MAGNA model as
described in Section 4.2, and finally a random-effects MAGNA model (individual and av-
eraged estimation) as described in Section 5. As these ‘datasets’ are drawn from the same
population, our expectation is that these results would align. To increase the feasibility
of this analysis, we used a slightly lower relative convergence tolerance of 1× 105.

Figure 1 shows the results of the DASS21 analysis. Panel 1a shows the estimated
GGM structures, and Panel 1b the correspondence between edge-weights. The full
dataset model and fixed-effects MAGNA model are near identical. The random-effects
MAGNA model, on the other hand, is highly similar but sparser than the other models.
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Label Scale Description
A1 Anxiety I was aware of dryness of my mouth.
A2 Anxiety I experienced breathing difficulty (eg, excessively rapid

breathing, breathlessness in the absence of physical exer-
tion).

A3 Anxiety I felt scared without any good reason.
A4 Anxiety I was aware of the action of my heart in the absence of phys-

ical exertion (eg, sense of heart rate increase, heart missing
a beat).

A5 Anxiety I felt I was close to panic.
A6 Anxiety I was worried about situations in which I might panic and

make a fool of myself.
A7 Anxiety I experienced trembling (eg, in the hands).
D1 Depression I couldn’t seem to experience any positive feeling at all.
D2 Depression I felt that I had nothing to look forward to.
D3 Depression I felt I wasn’t worth much as a person.
D4 Depression I felt down-hearted and blue.
D5 Depression I was unable to become enthusiastic about anything.
D6 Depression I felt that life was meaningless.
D7 Depression I found it difficult to work up the initiative to do things.
S1 Stress I tended to over-react to situations.
S2 Stress I found it difficult to relax.
S3 Stress I felt that I was using a lot of nervous energy.
S4 Stress I felt that I was rather touchy.
S5 Stress I found it hard to wind down.
S6 Stress I was intolerant of anything that kept me from getting on

with what I was doing.
S7 Stress I found myself getting agitated.

Table 1: Variable descriptions of the Depression Anxiety Stress Scales (DASS21; Lovi-
bond and Lovibond, 1995).
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A1

D1
A2

S1

S2

D2

S3

D3

S4

A3

S5

A4

D4

A5

D5

S6

D6

S7

A6

A7

D7

Based on full data

A1

D1
A2

S1

S2

D2

S3

D3

S4

A3

S5

A4

D4

A5

D5

S6

D6

S7

A6

A7

D7

fixed−effects MAGNA

A1

D1
A2

S1

S2

D2

S3

D3

S4

A3

S5

A4

D4

A5

D5

S6

D6

S7

A6

A7

D7

random−effects MAGNA

(a) Estimated network structures from the short version of the Depression Anxiety Stress Scales
(DASS21; Lovibond and Lovibond, 1995). Orange nodes indicate anxiety items, blue nodes
depression items, and green nodes stress items. Node descriptions can be read in Table 1.
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(b) Correspondence of estimated edge weights between different graphs shown in Figure 1a.

Figure 1: Results of the Depression Anxiety Stress Scales (DASS21; Lovibond and Lovi-
bond, 1995) analysis. Three models were estimated: (1) a model on the entire dataset
(n = 39,775), (2) a fixed-effects MAGNA model on the data split in 40 random samples
(average n = 994.3), and (3) a random-effects MAGNA fitted on the same data split in
40 samples.
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Edge weights that were included in the random-effects GGM were near identical to edge
weights in the other models (Panel 1b). The average random-effects standard deviation
was estimated to be 0.06, which is lower than the PTSD example, but still relatively
high. As such, this dataset shows that all methods recover the same dominant structure,
but also that including random effects in the model costs statistical power in detecting
weaker edge weights, which is not surprising given the vastly increased model complexity
of random-effects MAGNA compared to fixed-effects MAGNA.

5 Estimating Multi-group Ising Models from Summary Statis-
tics

While the current paper focuses on the GGM for continuous data, there are other net-
work models for other types of data that are also commonly used. The most prevalent
other network model used is the Ising Model (Epskamp, Maris, et al., 2018; Ising, 1925;
Marsman et al., 2018), which models dichotomous data. Originally used to model ferro-
magnetism, A particularly interesting property of the Ising model is that it can feature
two stable states rather than one as in the GGM (Dalege et al., 2016; Dalege et al., 2018).
More importantly, this behavior can be modeled with a single parameter, β, that controls
the temperature in a system. Common methods for estimating Ising model parameters
from data, such as the eLasso algorithm (van Borkulo et al., 2014), cannot directly esti-
mate the β parameter, as it is not identified together with the network structure. We can
make use of the estimator presented in Section 2 of the main text to also estimate Ising
models together with equality constrains across parameters as well as across multiple
datasets. In addition, we will see that these estimators also allow for the estimation of
Ising model parameters from summary statistics—the variance–covariance matrix of the
data—a novel contribution which has not yet been implemented in user-friendly software.
The presented methods below have been implemented in the psychonetrics (Epskamp,
2020b) package, and can be used through the function Ising. The package also contains
example code and an example dataset.

Let yyyC now represent a dichotomous random variable vector with observation yyyc ∈
{a, b}p for case c ∈ 1, . . . , n. Typically, encoding a = 0 and b = 1 are used in psycho-
metric modeling and encodings a = −1 and b = 1 are used when using the Ising model
as a computational model. While in the single group setting these encodings are equiva-
lent and resulting parameters can be transformed between the two encodings (Epskamp,
Maris, et al., 2018), they are not equivalent in the multi-group setting with equality con-
strains on some parameters across groups. The interpretation of some parameters can
be vastly different as well depending on the encoding used (Haslbeck et al., 2020). As
such, this is an important consideration to make before estimating an Ising model. For
the expressions below, however, the encoding is irrelevant, and can arbitrarily be defined
as a and b.

The Ising model can be characterized using the following probability function:

Pr(yyyC = yyyc) =
exp (−βH (yyyc;τττ ,ΩΩΩ))

Z(τττ ,ΩΩΩ)
.
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With τττ representing a set of intercepts (also termed ‘thresholds’ or ‘the external field’)
and ΩΩΩ representing the network structure. Here, H (yyyc;τττ ,ΩΩΩ) represents the Hamiltonian
potential function, which is a function of the elements of τττ and ΩΩΩ (simplifying notation
by dropping subscript c):

H (yyy;τττ ,ΩΩΩ) = −
p∑
i=1

τiyi −
p∑
i=2

i−1∑
j=1

ωijyiyj .

The function Z(τττ ,ΩΩΩ) is a normalizing constant with respect to the data, also called the
partition function, which sums over all possible outcomes for yyyC :

Z(τττ ,ΩΩΩ) =
∑
yyy

exp (−βH (yyy;τττ ,ΩΩΩ)) .

The notation
∑

yyy here indicates that a sum is taken over all possible outcomes for yyyC .
This sum can be very large, and becomes computationally intractable for models with
many (e.g., over 20) nodes. However, many applications of Ising models in psychological
datasets are on network structures of fewer nodes (e.g., Fried et al., 2015), in which case
the evaluation of Z is entirely feasible.

Let v(1)i =
∑n

c=1 (yci) and v
(2)
ij =

∑n
c=1 (yciycj) represent summary statistics of the

data. These summary statistics can also be obtained directly from the sample means and
sample variance–covariance matrix discussed in Section of the main text (there presented
as sample means and covariances of the sample correlations rather than of the raw data):

vvv(1) = nȳyy

VVV (2) = n
(
S̄SS + ȳyyȳyy>

)
.

Using these summary statistics, we can characterize the sum of Hamiltonians over all
cases, here defined as H∗, as a function of these summary statistics:

H∗
(
vvv(1),VVV (2);τττ ,ΩΩΩ

)
=

n∑
p=1

H (yyyp;τττ ,ΩΩΩ) = −
m∑
i=1

τiv
(1)
i −

m∑
i=2

i−1∑
j=1

ωijv
(2)
ij .

The fit function, −2/n times the log likelihood, then becomes:

Fml = 2 ln (Z(τττ ,ΩΩΩ)) +
2β

n
H∗
(
vvv(1),VVV (2);τττ ,ΩΩΩ

)
.

In this setting, we will not further model the parameters of the Ising model. As
such, the distributional parameters φφφ and the model parameters θθθ are the same. For the
single-group setting, these becomes:

φφφ = θθθ =

τττωωω
β

 ,
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in which ωωω = vechs (ΩΩΩ). This also simplifies the model Jacobian to be:

∂φφφ

∂θθθ
= III.

Other setups are possible. For example, one could aim to model a low-rank Ising model
as described by Marsman et al. (2015) in this setting as well by assigning a different
model Jacobian. The manual Jacobian will be a matrix of ones and zeroes indicating
which parameters are free to be estimated and which are fixed to their starting values.
As the inverse temperature parameter β is not identified together with τττ and ΩΩΩ, it is
typically constrained to 1, which can be modeled with:

∂θθθ

∂φφφ
=

 III OOO 000
OOO III 000
000> 000> 0

 ,
which is an identity matrix with the last diagonal element set to zero. Other (equality)
constrains in the manual Jacobian can identify β, especially when extended to the multi-
group setting.

The distribution Jacobian for the single-group Ising model takes the following form:

∂F

∂ψψψ
=
[
∂F
∂τττ

∂F
∂ωωω

∂F
∂β

]
,

which is a row vector with each element indicating the derivative of the fit function to
that particular parameter. It can be derived that these derivatives follow the difference
between observed and expected summary statistics:

∂F

∂τi
= 2βE (yi)− 2β

v
(1)
i

n

∂F

∂ωij
= 2βE (yiyj)− 2β

v
(2)
ij

n

∂F

∂β
= 2

H∗

n
− 2E (H) .

Let HHH ... represent an element of the distribution Hessian:

E
[
∂∇∇∇F
∂φφφ

]
=



HHHτ1,τ1 HHHτ1,τ2 . . . HHHτ1,ω11 HHHτ1,ω21 . . . HHHτ1,β

HHHτ2,τ1 HHHτ2,τ2 . . . HHHτ2,ω11 HHHτ2,ω21 . . . HHHτ2,β
...

...
...

...
...

...
...

HHHω11,τ1 HHHω11,τ2 . . . HHHω11,ω11 HHHω11,ω21 . . . HHHω11,β

HHHω21,τ1 HHHω21,τ2 . . . HHHω21,ω11 HHHω21,ω21 . . . HHHω21,β
...

...
...

...
...

...
...

HHHβ,τ1 HHHβ,τ2 . . . HHHβ,ω11 HHHβ,ω21 . . . HHHβ,β


.
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These elements then take the following form:

HHHτi,τj = 2β2 (E (yiyj)− E (yi) E(yj))

HHHωij ,τk = 2β2 (E (yiyjyk)− E (yiyj) E (yk))

HHHωij ,ωkl
= 2β2 (E (yiyjykyl)− E (yiyj) E (ykyl))

HHHτi,β = 2 (E (yi) E (H)− E (yiH))

HHHωij ,β = 2 (E (yiyj) E (H)− E (yiyjH))

HHHβ,β = 2
(
E (H)2 − E

(
H2
))
.

With these expressions, the Ising model can be estimated using maximum likelihood
estimation from the sample means and variance–covariance structure exactly in the same
manner the GGM can be estimated as described in the main text and supplementary
materials. This allows for imposing equality constrains as well as to estimate an Ising
model with certain edge weights fixed to zero. Extension to the multi-group setting
can also be performed in exactly the same manner as described in the main text: by
specifying the distribution Jacobians and Hessians described above for each group and
imposing equality constrains across groups in the manual Jacobian.
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