


Spear and Shield: Evolution of Integrated Circuit Camouflaging

Xueyan Wang, Qiang Zhou, Yici Cai, Gang Qu

Wang XY, Zhou Q, Cai YC et al. Spear and shield: Evolution of integrated circuit camouflaging. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 33(1): 42–57 Jan. 2018. DOI 10.1007/s11390-018-1807-6

Why Gate Camouflaging?

- Design Complexity & Design Cost Increase.
- Intellectual Property (IP) Infringement Enabled by Reverse Engineering (RE).
- Gate Camouflaging---Proactive Countermeasure against RE
 - Camouflaged cells can be configured to have one of the multiple functionalities with identical look.
 - Selective gates are replaced by camouflaged cells.

Existing De-Camouflaging Attacks

Brute Force Attack (BFA)

- Enumerate to try each possible functionality combination and compare with the functional IC.
- IC Testing-Based Attack (ITA)
 - Get the input-output behaviors of each camouflaged gate by justifications and sensitizations.
- SAT-Based Attack (SATA)
 - Prune incorrect functionality combinations with a discriminating set of input patterns by SAT solvers.
- Circuit Partition Attack (CPA)
 - > Apply the divide and conquer methodology to partition camouflaged gates into multiple sub-circuits and de-camouflage each sub-circuit separately.

Defenses Against De-Cam. Attacks

Clique-Based camouflaging

Ensure that each camouflaged gate's either inputs cannot be justified, or output cannot be sensitized.

CamoPerturb

Perturb one minterm of the original design, and "recorrect" it with additional camouflaged module.

And-Tree Camouflaging

- Camouflage the inputs of And-tree structure, to prevent controlling the inputs of camouflaged gates.
- Equivalent Class-Based Camouflaging
 - Select gates for camouflaging from one certain equivalent class to avoid being partitioned into different sub-circuits to attack separately.

Challenges and Opportunities

- How to reduce the overhead incurred by circuit camouflaging would continue to be an urgent need.
- Design countermeasures against the newly proposed SAT-based de-camouflaging attacks.
- Explore intrinsic reconfigurable properties of emerging devices and how they can be utilized for circuit camouflaging.