
A Dataflow-Oriented Programming Interface 
for Named Data Networking

Li-Jing Wang, Yong-Qiang Lyu, Ilya Moiseenko, 
Dong-Sheng Wang

Wang LJ, Lv YQ, Moiseenko I et al. A dataflow-oriented programming interface for named 
data networking. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 33(1): 158–168 Jan. 
2018. DOI 10.1007/s11390-018-1812-9



Research Problem

• Named Data Networking (NDN), as a new data-oriented 
network architecture, uses data names instead of IP addresses 
for flowing data. 

• NDN enables applications to communicate using Application 
Data Units (ADU) , which results in great flexibility of 
application design but also introduces more complex tasks, 
such as data segmentation, packet verification and flow control.

• Therefore, the absence of the programming interface in 
transport layer leads to severe difficulties of NDN application 
development.

• In this paper, we propose a dataflow-oriented programming 
interface to provide a variety of transport-layer strategies for 
NDN, which greatly improves the efficiency in developing 
applications.

2



Kernel Contributions

• We design a dataflow-oriented programming interface in NDN transport 
layer. We also implement a video streaming application by utilizing this 
programming interface to verify its functionality and performance.

• The interface helps application developers handle complex network-layer 
tasks, such as data segmentation, packet verification, and data 
retransmission, to guarantee reliable data delivery and improve 
development efficiency.

• For largely asynchronous publishing, the interface provides a throughput 
perceptive parallel ADU consumption strategy to achieve high 
performance. For real-time publishing, the interface provides an 
adaptive ADU pipeline strategy to control the dataflow based on the 
current network status and data generation rate.

• The interface also provides network measurement strategies to monitor 
an abundance of critical metrics that influence application performance.

3



Results & Conclusions - Parallel Strategy

4

Conclusion1: Parallel Strategy helps retrieve the data with the 
required throughput by adjusting the parallel window. 

Fig.2. Median latency of Interest-Data exchanges 
(99%ile indicated by lines atop the bars).

Fig.1. Throughput of Interest-Data exchanges (error bars show 95% CI).

Conclustion2: Larger window also brings larger latency. 

Conclustion3: The application developer should pay 
attention to the tradeoff between throughput and 
latency when use this strategy.

Fig.3. Interest-Data latency vs. throughput.



Results & Conclusions - Pipeline Strategy

5

Conclusion 4: The growing tendency of ADU latency with respect 
to NLSR cost verified that the measurement layer can provide 
authentic network status to the data retrieval strategy.

Conclusion 5: Both the stable throughput for video and audio 
frames and the similar growing tendency with respect to ADU 
latency showed that the proper pipeline window and ADU 
timeout contribute to the stable data retrieval.

Conclusion 6: During the testing period, except for an 
unavoidable initial playing delay, the video was only 
slightly stuck (less than 300 ms) at the beginning of 
congestion due to prolonged I-D exchange latency, and 
could be kept fluent during the whole progress with 
stable ADU throughput ≈ 60, which verified that our 
algorithm can control the dataflow efficiently even 
facing small network congestions.

Fig.5. Pipeline window, ADU latency and ADU 
throughput when network congestion occurs.

Fig.4. Pipeline window and ADU latency over the world-wide testbed.


