Edge computing based applications in vehicular environments: comparative study and main issues

> Mendiboure L, Chalouf MA, Krief F. Edge computing based applications in vehicular environments: Comparative study and main issues. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 34(4): 869–886 July 2019. DOI 10.1007/s11390-019-1947-3

Authors Mendiboure L., Chalouf M.A., Krief F.

Edge Computing Vehicular Technologies Applications

Why Edge Computing should be integrated in the vehicular environment?

- Vehicular networks are supporting new applications with different characteristics and various needs
- The most common approach, based on Cloud Computing, presents some limitations in terms of:
 - QoS (latency, bandwidth)

Introduction

- Scalability
- Security
- Edge Computing is an interesting new approach for vehicular applications
 - provides additional and near computational and storage capabilities, in order to achieve:
 - Lower latency
 - More bandwidth
 - Higher scalability

Introduction

Edge Computing Vehicular Technologies Applications

Edge computing-based networks: Technologies comparison

Edge Computing technologies	Supporting companies
Cloudlet	Service providers (Open Edge Computing Initiative)
Mobile Edge Computing (MEC)	Network operators (ETSI ISG)
Fog Computing (FC)	Manufacturers (Open Edge Consortium)

- Thus, the considered (three) technologies present different characteristics in terms of:
 - Architecture
 - Operation (proximity, etc.)
 - Computational and storage capabilities (location, performances, etc.)
 - Used techniques and tools (context-awareness, etc.)

Introduction

Edge Computing Technologies Vehicular Applications

Edge computing-based vehicular application

- For each Edge Computing technology, different vehicular applications were proposed:
 - implying some challenges (QoS, mobility, scalability, security, etc.)
 - using different approaches (content caching, resource management, etc.)
- For each application, we studied:
 - the Edge Computing technology choice and the approach
 - the benefits and the features
 - the remaining challenges
- For different vehicular applications, we defined the more suitable Edge Computing technology depending on its requirements: *cost*, *latency*, *storage and computational capabilities*, *etc*.

Technology	Applications
Cloudlet	Infotainment, Advertising, Transport Management, etc.
Fog Computing	Road Safety applications, Driver Assistance, etc.
Mobile Edge Computing	Transport Management, Network Services, etc.

Open issues and future directions

- The integration of Edge Computing within the vehicular environment is not without challenges
- Some of these challenges were addressed in the various studied work
- Different improvements should be considered for each Edge Computing technology
- Some challenges remain without [complete] answers:
 - Security and privacy
 - Communications reliability
 - Applications placement
 - Integration in the future ecosystem (5G networks)

