MPI-RCDD: A Framework for MPI Runtime Communication Deadlock Detection

Hongmei Wei¹, Jian Gao^{2*}, Peng Qing², Kang Yu², Yanfei Fang² and Minglu Li¹

 (1. Department of Computer Science & Engineering, Shanghai jiaotong University, Shanghai 200240, China)
(2. Jiangnan Institute of Computing Technology, Wuxi 214083, China)

Wei HM, Gao J, Qing P et al. MPI-RCDD: A framework for MPI runtime communication deadlock detection. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 35(2): 395–411 Mar. 2020. DOI 10.1007/s11390-020-9701-4

Research Background

- The Message Passing Interface (MPI) has become a de facto standard for programming models of high performance computing (HPC)
- Establishing communication deadlock-freedom in MPI programs is known to be a challenging exercise
- MPI communication deadlock makes it difficult for programs to guarantee their correctness, which seriously affects availability of HPC system
- Due to the significant uncertainty and complexity of the execution of the MPI process, communication deadlock detection becomes extremely difficult.
- Although many scholars have conducted a lot of research on the problem of MPI communication deadlock detection, a scalable solution remains elusive

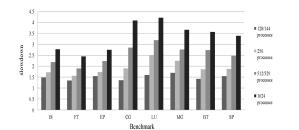
Contributions

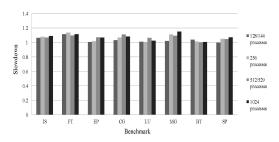
- MPI-RCDD: A framework for MPI runtime communication deadlock detection is proposed
 - The first time to design and optimize in the MPI runtime library to solve the MPI deadlock problem
 - Many processes are involved in the deadlock detection of the program, with strong capability and scalability
- A new MPI communication deadlock detection algorithm based on AND⊕OR wait graph model is proposed
 - Using the asynchronous processing thread provided by the MPI runtime environment to transparently implement the dependency transfer between processes
- Multiple typical benchmarks were used to evaluate the effectiveness of the MPI-RCDD
 - Capability : Umpire Test Suit
 - Scalability : NPB benchmarks

Experiments

Capability

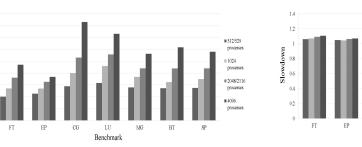
 MPI-RCDD always detects deadlocks within valid time and does not generate false positives


Results on the X86 cluster


Results on the Sunway TaihuLight

Test Program	Deadlock Type	Process Size	Tool	Detection Time (s)	Test Program	Deadlock Type	Process Size	Tool	Detection Time (s)
2D-Diffusion	potential	4	MPI-RCDD	0.284			1024	MPI-RCDD	0.752
			MUST	0.283				MUST	1.319
Heat Error	potential	32	MPI-RCDD	0.276	Ex-basic-	deterministic	2048	MPI-RCDD	0.909
			MUST	0.369	deadlock			MUST	1.767
basic-deadlock	deterministic	4	MPI-RCDD	0.232	ucaulock		4096		
			MUST	0.226				MPI-RCDD	1.114
basic-	deterministic	8	MPI-RCDD	0.185		deterministic	1024 2048	MUST	2.404
deadlock2			MUST	0.265				MPI-RCDD	0.677
irecv-deadlock	deterministic	16	MPI-RCDD	0.313				MUST	1.224
			MUST	0.299	Ex-irecv-			MPI-RCDD	0.856
wait-deadlock	deterministic	32	MPI-RCDD	0.34	deadlock			MUST	1.821
			MUST	0.448			4096	MPI-RCDD	1.073
waitall-	deterministic	4	MPI-RCDD	0.226				MUST	2.676
deadlock			MUST	0.224					0.754
waitany-	deterministic	8	MPI-RCDD	0.213		potential	1024	MPI-RCDD	
deadlock			MUST	0.212				MUST	1.365
any_src-can-	potential	16	MPI-RCDD	0.265	Ex-any_src-		2048	MPI-RCDD	0.968
deadlock7			MUST	0.298	can-deadlock9			MUST	2.29
any_src-can-	potential	32	MPI-RCDD	0.275			4096	MPI-RCDD	1.133
deadlock9			MUST	0.303				MUST	2.986
any_src-wait-	potential	4	MPI-RCDD	0.212		potential	1024 2048	MPI-RCDD	0.841
deadlock			MUST	0.207				MUST	1.506
any_src-waitall-	potential	8	MPI-RCDD	0.354					
deadlock			MUST	0.372	Ex-waitany-			MPI-RCDD	0.935
any_src-	potential	16	MPI-RCDD	0.511	deadlock			MUST	2.098
waitany-			MUST	0.578			4096	MPI-RCDD	1.173
deadlock			MPI-RCDD	0.243				MUST	3.33
bcast-deadlock	deterministic	32	MUST	0.245				MPI-RCDD	0.664
collective-			MPI-RCDD	0.286		deterministic	1024	MUST	1.158
misorder	deterministic	4	MUST	0.333	Ex-collective-		2048	MPI-RCDD	0.725
collective-			MPI-RCDD	0.325	misorder			MUST	1.658
misorder2	deterministic	8	MUST	0.338	moorael		4096		
collective-			MPI-RCDD	0.402				MPI-RCDD	0.962
misorder-	deterministic	16	NULL KCDD	0.244				MUST	2.326
allreduce			MUST	0.317					

• Scalability


 MPI-RCDD's deadlock detection work subtly bypasses the strong correlation with program size, and it has strong scalability, reaching the expected goal of processing large-scale parallel applications

Results for MUST on the X86 cluster

Results for MPI-RCDD on the X86 cluster

Results for MUST on the Sunway TaihuLight

Benchmark Results for MPI-RCDD on the Sunway TaihuLight

Results of the NPB benchmark on Sunway TaihuLight (D scale)

Results of the NPB benchmark on X86 clusters (C scale)

Conclusions

- MPI-RCDD is not limited to a specific system structure and does not rely on additional components by closely linking the deadlock detection problem to the MPI runtime library
- The AODA algorithm we proposed combines two common deadlock analysis methods, message timeout and process dependency, to ensure that no false positives are generated, and the root cause of deadlock can be accurately located, alleviating the performance bottleneck of centralized analysis
- The capability and scalability of the MPI-RCDD was verified using a number of typical benchmarks with satisfactory results