
MPI-RCDD: A Framework for MPI Runtime 
Communication Deadlock Detection

Hongmei Wei1, Jian Gao2*, Peng Qing2 , Kang Yu2 , 
Yanfei Fang2 and Minglu Li1

(1. Department of Computer Science & Engineering, Shanghai jiaotong 
University, Shanghai 200240, China)
(2. Jiangnan Institute of Computing Technology, Wuxi 214083, China)

Wei HM, Gao J, Qing P et al. MPI-RCDD: A framework for MPI runtime communication deadlock detection. JOURNAL

OF COMPUTER SCIENCE AND TECHNOLOGY 35(2): 395–411 Mar. 2020. DOI 10.1007/s11390-020-9701-4



Research Background
• The Message Passing Interface (MPI) has become a de facto standard for 

programming models of high performance computing (HPC) 

• Establishing communication deadlock-freedom in MPI programs is known to 
be a challenging exercise

• MPI communication deadlock makes it difficult for programs to guarantee 
their correctness, which seriously affects availability of HPC system

• Due to the significant uncertainty and complexity of the execution of the MPI 
process, communication deadlock detection becomes extremely difficult.

• Although many scholars have conducted a lot of research on the problem of 
MPI communication deadlock detection, a scalable solution remains elusive



Contributions
• MPI-RCDD: A framework for MPI runtime communication deadlock detection is proposed

▫ The first time to design and optimize in the MPI runtime library to solve the MPI 
deadlock problem

▫ Many processes are involved in the deadlock detection of the program, with strong 
capability and scalability

• A new MPI communication deadlock detection algorithm based on AND⊕OR wait graph 
model is proposed 
▫ Using the asynchronous processing thread provided by the MPI runtime environment to 

transparently implement the dependency transfer between processes
• Multiple typical benchmarks were used to evaluate the effectiveness of the MPI-RCDD

▫ Capability：Umpire Test Suit
▫ Scalability：NPB benchmarks



Experiments
• Capability

▫ MPI-RCDD always detects deadlocks within valid 

time and does not generate false positives

Test Program
Deadlock 

Type
Process 

Size
Tool

Detection 
Time (s)

2D-Diffusion potential 4
MPI-RCDD 0.284

MUST 0.283

Heat Error potential 32
MPI-RCDD 0.276

MUST 0.369

basic-deadlock deterministic 4
MPI-RCDD 0.232

MUST 0.226
basic-

deadlock2
deterministic 8

MPI-RCDD 0.185
MUST 0.265

irecv-deadlock deterministic 16
MPI-RCDD 0.313

MUST 0.299

wait-deadlock deterministic 32
MPI-RCDD 0.34

MUST 0.448
waitall-

deadlock
deterministic 4

MPI-RCDD 0.226
MUST 0.224

waitany-
deadlock

deterministic 8
MPI-RCDD 0.213

MUST 0.212
any_src-can-

deadlock7
potential 16

MPI-RCDD 0.265
MUST 0.298

any_src-can-
deadlock9

potential 32
MPI-RCDD 0.275

MUST 0.303
any_src-wait-

deadlock
potential 4

MPI-RCDD 0.212
MUST 0.207

any_src-waitall-
deadlock

potential 8
MPI-RCDD 0.354

MUST 0.372
any_src-
waitany-
deadlock

potential 16
MPI-RCDD 0.511

MUST 0.578

bcast-deadlock deterministic 32
MPI-RCDD 0.243

MUST 0.286
collective-
misorder

deterministic 4
MPI-RCDD 0.335

MUST 0.323
collective-
misorder2

deterministic 8
MPI-RCDD 0.338

MUST 0.402
collective-
misorder-
allreduce

deterministic 16
MPI-RCDD 0.244

MUST 0.317

Results on the X86 cluster Results on the Sunway TaihuLight

Test Program
Deadlock 

Type
Process Size Tool

Detection 
Time (s)

Ex-basic-
deadlock

deterministic

1024
MPI-RCDD 0.752

MUST 1.319

2048
MPI-RCDD 0.909

MUST 1.767

4096
MPI-RCDD 1.114

MUST 2.404

Ex-irecv-
deadlock

deterministic

1024
MPI-RCDD 0.677

MUST 1.224

2048
MPI-RCDD 0.856

MUST 1.821

4096
MPI-RCDD 1.073

MUST 2.676

Ex-any_src-
can-deadlock9

potential

1024
MPI-RCDD 0.754

MUST 1.365

2048
MPI-RCDD 0.968

MUST 2.29

4096
MPI-RCDD 1.133

MUST 2.986

Ex-waitany-
deadlock

potential

1024
MPI-RCDD 0.841

MUST 1.506

2048
MPI-RCDD 0.935

MUST 2.098

4096
MPI-RCDD 1.173

MUST 3.33

Ex-collective-
misorder

deterministic

1024
MPI-RCDD 0.664

MUST 1.158

2048
MPI-RCDD 0.725

MUST 1.658

4096
MPI-RCDD 0.962

MUST 2.326

• Scalability
▫ MPI-RCDD's deadlock detection work subtly 

bypasses the strong correlation with program size, 

and it has strong scalability, reaching the expected 

goal of processing large-scale parallel applications

Results of the NPB benchmark on X86 clusters (C scale)

Results of the NPB benchmark on Sunway TaihuLight (D scale)

Results for MUST on the X86 cluster Results for MPI-RCDD on the X86 cluster

Results for MUST on the Sunway TaihuLight Results for MPI-RCDD on the Sunway TaihuLight



Conclusions
• MPI-RCDD is not limited to a specific system structure and does not rely 

on additional components by closely linking the deadlock detection 
problem to the MPI runtime library

• The AODA algorithm we proposed combines two common deadlock 
analysis methods, message timeout and process dependency, to ensure 
that no false positives are generated, and the root cause of deadlock can 
be accurately located, alleviating the performance bottleneck of 
centralized analysis

• The capability and scalability of the MPI-RCDD was verified using a 
number of typical benchmarks with satisfactory results


