Zhao SF, Wang F, Liu B *et al*. LayCO: Achieving least lossy accuracy for most efficient RRAMbased deep neural network accelerator via layer-centric co-optimization. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 38(2): 328–347 Mar. 2023. DOI: 10.1007/s11390-023-2545-y

LayCO: Achieving Least Lossy Accuracy for Most Efficient RRAM-Based Deep Neural Network Accelerator via Layer-Centric Co-Optimization

Shao-Feng Zhao^{1;4} (赵少锋), Student Member, CCF, Fang Wang^{1;2} (王芳), Member, CCF, Bo Liu³ (刘博), Dan Feng^{1;2} (冯丹), Member, CCF, ACM, IEEE, and Yang Liu⁴ (刘祥)

1 Wuhan National Laboratory for Optoelectronics, Key Laboratory of Information Storage System, Engineering Research Center of data storage systems and Technology (School of Computer Science & Technology, Huazhong University of Science & Technology), Ministry of Education of China 2 Research Institute of Huazhong University of science and technology in Shenzhen

3 School of Computer and Artificial Intelligence, Network Management Center, Zhengzhou University

4 Cloud Computing and Big Data Institute, Cyberspace Administration Center, Henan University of Economics and Law

Research Context

- Resistive random access memory (RRAM)
 - enables to operate massively parallel dot products and accumulations
- RRAM-based accelerator
 - effective approach to bridge the gap between Internet of Things devices' constrained resources and DNNs' tremendous cost
- Analog RRAM buffer
 - due to the huge overhead of A/D conversions and digital accumulations
 - offers potential solutions to A/D conversion issues

Research Objectives

- Our research aims to address:
 - the energy consumption in resource-constrained environments
 - the critical concerns over endurance
 - strictly provides an inference accuracy guarantee

Research Method

- A co-optimizing strategy
 - combining both voltage regulation and bit-width compaction
 - in a layer-centric fashion
- A data mapping and wear-aware data swapping method
 - designate RRAM partition to DNN
 - control the write balance of whole RRAM arrays

Research Results

- LayCO outperforms state-of-the-art designs in:
 - energy efficiency (27imes over TIMELY-like configuration)
 - lifetime prolongation (308 imes over RAQ)
 - area reduction (6imes over RAQ)
 - strictly ensuring a target DNN accuracy (accuracy loss less than 1%)

Research Conclusions

• Three key contributions on LayCO:

voltage regulating, bit-width tightening, and data
mapping and swapping method

- Enlighten further research
 - Low-voltage approximate memory for error-tolerant

deep learning workloads