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Appendix A Algorithm details

The proposed algorithm iterates within three steps until reaching convergence. The parameters of sparse part are updated

in the first step and the parameters of the mixed Gaussians are updated simultaneously by the following two steps of EM

algorithm. The norm constraint items in formula (A1) is solved by Augmented lagrange Multipliers [1]. The intermediate

result in this step is denoted by tempA, which is a latent low rank matrix. Then the sparse noise TempS = UV T −TempA,

in which UV T is from the iteration result of MoG approximating continuous noise and contains the latent low rank matrix

and sparse noise. The following two iterations aim to estimate gaussian model parameters. In the next mixture gaussian

model parameter estimation, We put the P = P −TempS as input matrix. In order to get the final latent low rank matrix,

U and V are needed to update during iteration.

L(Q,S,C, µ) = ||Q||∗ + ||S||1 +
N∑

n=1
πnp (C|n) + µ ∥P −Q− S − C∥2F (A1)

First step, we take the input matrix P for SVD decomposition, then get sparse partial noise S with soft threshold method

and obtain matrix TempQ containing continuous noise that equal to Q + C, simultaneously. Second step, it assumes a

latent variable zr,d,n with zr,d,n ∈ (0, 1) and
N∑

n=1
zr,d,n = 1, implying which specific components of the mixture Gaussian

model is most likely better fitting the continuous distribution noise cr,d,n. Next, we calculate the maximum expectation of

log p
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pr,d, zr,d,n

)
|U, V,Π,∆

)
in regard to the variable zr,d,n. The third step, it makes the upper bound of the expectation

being the largest, it is formulated as follow:
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Eq. (A3) calculates the posterior responsibility of mixture gaussian qr,d,n which referred in (A2).
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This step is designed to iterative update parameter values to maximize likelihood function. The parameters U, V,Π,∆ will

be alternatively updated in a closed form as shown in the follows.
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(A4)
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The dimension of {qr,d,n} is Dq
n and Sq

n =
∑

r,d∈Ω
qr,d,n. During the process of iteration, the total number of Gaussian

components(denoted byN ) needs to be adjusted according to the variance of the gaussian distribution. The ith and jth

Gaussian components need to be combined into a unique Gaussian distribution when it faces with the condition
σ2
i −σ2

j

σ2
i +σ2

j

6 ε,
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let ni signify the element number of the ith Gaussian component, then, we change the parameters of mixture Gaussian

by setting πi = πi + πj , σ
2
i =

niσ
2
i +njσ

2
j

ni+nj
, at the same time, it removes the the jth Gaussian component and all of its

parameters. Finally, make the number N minus one automatically. The low rank matrix components U and V is formulated

as ∑
r,d∈Ω
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(A6)

where W is a weighting indicator matrix.

Several existing algorithms can be adopted to optimize (A6), like Augmented Lagrange algorithm (ALS). The optimiza-

tion process of the algorithm is described in Algorithm A1.

Algorithm A1

Input: Pj,k =
(
p1,j,k, p2,j,k, · · · , pm,j,k

)
∈ Rr×d;

Output: U, V , Qj,k = UV T , S, C = P −Q− S;

1: Initialization: U, V,Π,∆, S, the mixture gaussian number N , the small iteration threshold ε;

2: repeat:

3: use ALM algorithm to obtain tempA; TempS = UV T − TempA;

4: (E step):Evaluate {qi,j,n} for i=1,2,...,r; j=1,2,...,d; n=1,2,...N by (A3);

5: (M step):Evaluate Π,∆ by (A4) and (A5), respectively;

6: Evaluate U, V by minimize (A6);

7: until converged

8: Output Qj,k Qj,k = UV T

Appendix B More experiments

Appendix B.1 Video denoising on various noise sets

We conduct three groups of experiments by adding different sets of noises.

1) The video data is corrupted by only continuous noise: two Gaussian noises (δ1 = 20, δ2 = 30) and Poisson noise(p =

25). The qualitative and quantitative results are shown in Figure B1 and Table B1, respectively. In this experiment, MoG

performs best because it is mainly designed for dealing with continuous noise. Our method also performs well but after

MoG. Besides the MoG part, our model also has the L1 norm part for sparse noise, which may lower the performance in

such situation.

2) The video data is corrupted by only sparse noise: salt & pepper (10%). From the results shown in Figure B2, neither

cvBM3D nor MoG is robust to sparse noise, and LRMC can not well preserve the detail of the images. Table B2 shows the

quantitative results of PSNR, from which, we can see our method performs best in this set of experiments.

3) The video data is corrupted by mixed noises with Gaussian noise (δ1 = 20), Poisson noise (p = 10) and salt & pepper

(10%). Figure B4 gives the qualitative results, in which, the comparisons of some details are also provided in a zoomed-in

show (in red box). As shown, our method gives the best visual effect on both the global view and the details. Also in the

comparison on PSNR in Table B3, it is illustrated that our method performs best in all the six clips of videos.

Figure B1 Experiments on videos with continuous noise: two Gaussian noise variance(δ1 = 20, δ2 = 30 ); Poisson noise

parameter(p = 25).
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Figure B2 Experiments on videos with sparse noise: salt and pepper( 20%).

Table B1 The PSNR of experiments on videos with continuous noise

experiments cvBM3D LRMC MoG WNNM ours

1 20.2534 23.1455 24.3606 21.9008 23.9501

2 20.0587 20.2334 23.9782 20.1454 23.1128

Table B2 The PSNR of experiments on videos with sparse noise

experiments cvBM3D LRMC MoG WNNM ours

1 13.0371 28.2307 17.1410 25.6431 30.2928

2 13.0900 27.7906 13.6710 26.4360 29.0930

Table B3 The PSNR of experiments on videos with mixture noise

experiments cvBM3D LRMC MoG WNNM ours

1 19.8413 25.4806 21.3826 24.1212 25.5223

2 12.5072 21.4574 14.5898 20.4538 22.3574

3 17.1914 26.0974 20.7647 24.0839 30.4888

4 19.0221 19.9309 19.4526 19.6430 20.2429

5 16.1576 20.4733 18.5426 20.3272 23.2940

6 20.3652 23.1670 20.9946 21.0780 24.3736

Appendix B.2 The choice of W and L and the influence on the performance

W and L mentioned in the paper are the size of patch match block. For investigating the influence of the block size change

on the final results, we carry out the series of experiments on various values of W and L. Figure B3 shows the comparison

result.

As the block size changes from small to large, more and more details get lost. Specifically, when the block size is (20,20),

the block-artifact phenomenon is severe. The main reason is that when the block is too large, the low-rank property is not

well guaranteed. For the smaller size cases, e.g. (4,4), although more details are preserved, it also generates some artificial

noises on the overlapping area of blocks. And also, it costs more computing time as sacrifice. It can be seen form Figure B3

that size (8,8) can achieve most robust result. It is effective for most of cases. For all the rest experiments in this paper,

W and L are chosen 8× 8.

Figure B3 Experiments on various values of (W,L).
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Figure B4 Experiments on videos with mixed noise: Gaussian noise variance (δ1 = 20), Poisson noise parameter (p = 10),

pepper and salt(10%). In each group, the upper line and the lower line correspond to global and detailed (zoomed-in) results,

respectively.
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