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Appendix A Proof of Theorem 2

Proof. Let X2(s) =
∫+∞
0 e−stx2(t)dt and U(s) =

∫+∞
0 e−stu(t)dt be the Laplace transforms of x2(t) and u(t) respectively,

where the integrals are in the sense of Bochner, and take the Laplace transforms [1] on both sides of system (5), we obtain

X2(s) = (sN − I2)
−1Nx2(0) + (sN − I2)

−1B2U(s). (A1)

Since (sN − I2)−1 = −
h−1∑
i=0

N isi, we have, from (A1)

X2(s) = −
h−1∑
i=0

N i+1six2(0)−
h−1∑
i=0

N isiB2U(s). (A2)

Taking the inverse Laplace transforms on both sides of (A2) gives

x2(t) = −
h−1∑
i=1

N iδ(i−1)(t)x2(0)−
h−1∑
i=1

N i
i−1∑
j=0

δ(j)(t)B2u
(i−j−1)(0)−

h−1∑
i=0

N iB2u
(i)(t)

= −
h−1∑
i=1

N i[δ(i−1)(t)x2(0) +

i−1∑
j=0

δ(j)(t)B2u
(i−j−1)(0)]−

h−1∑
i=0

N iB2u
(i)(t), (A3)

which can be arranged into the forms of

x2 = x2pulse(t) + x2normal(t),

x2pulse(t) = −
h−1∑
i=1

N i[δ(i−1)(t)x2(0) +
i−1∑
j=0

δ(j)(t)B2u(i−j−1)(0)],

x2normal(t) = −
h−1∑
i=0

N iB2u(i)(t).

(A4)

Furthermore, exchanging the order of the double sum and noting that Nh = 0 in (A3), we have

h−1∑
i=1

N iB2

i−1∑
j=0

δ(j)(t)u(i−j−1)(0) =
h−2∑
i=0

δ(i)(t)[
h−1∑

k=i+1
NkB2u(k−i−1)(0)] =

h−2∑
i=0

δ(i)(t)N i[
h−1∑

k=i+1
Nk−iB2u(k−i−1)(0)]

=
h−2∑
i=0

δ(i)(t)N i[
h−i−1∑
l=1

N lB2u(l−1)(0)] =
h−2∑
i=0

δ(i)(t)N i[
h−i−1∑
l=1

N lB2u(l−1)(0) +
h−1∑

l=h−i;i̸=0
N lB2u(l−1)(0)]

=
h−2∑
i=0

δ(i)(t)N i[
h−1∑
l=1

N lB2u(l−1)(0)] =
h−2∑
i=0

δ(i)(t)N i[
h∑

l=1
N lB2u(l−1)(0)]

=
h−2∑
i=0

δ(i)(t)N i+1[
h−1∑
l=1

N l−1B2u(l−1)(0)] =
h−1∑
i=1

δ(i−1)(t)N i[
h−1∑
i=0

N iB2u(i)(0)].

(A5)
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Combing (A3), (A4) and (A5), the following result can be immediately obtained,

x2(t) = x2pulse(t) + x2normal(t), (A6)

where

x2pulse(t) = −
h−1∑
i=1

N iδ(i−1)(t)[x20 +

h−1∑
i=0

N iB2u
(i)(0)],

x2normal(t) = −
h−1∑
i=0

N iB2u
(i)(t).

By (A4) and (A6), (9) holds. The proof is complete.

Appendix B Proof of Theorem 4

Proof. According to Theorem 3, the solution of the system (2) is given by

x(t) = Q

 eKt[I1 0]Q−1x0 +
∫ t
0 eK(t−τ)B1u(τ)dτ

−
h−1∑
i=1

N iδ(i−1)(t)[[0 I2]Q−1x0 +
h−1∑
i=0

N iB2u(i)(0)]−
h−1∑
i=0

N iB2u(i)(t)

 .

Since the solution of system (4) does not contain generalized function, it suffices to consider the solution of the system (5).

For the solution of the system (5) corresponding to the initial value x(0) = x0, by letting x20 = [0 I2]Q−1x0, we have

x2(t) = −
h−1∑
i=1

N iδ(i−1)(t)[x20 +

h−1∑
i=0

N iB2u
(i)(0)]−

h−1∑
i=0

N iB2u
(i)(t). (B1)

Letting t = 0 in the above equation gives

x20(0) = −
h−1∑
i=1

N iδ(i−1)(0)[x20 +

h−1∑
i=0

N iB2u
(i)(0)]−

h−1∑
i=0

N iB2u
(i)(0).

When N ̸= 0, in view of the independency of functions δ(i)(t), it can be easily observed that for an arbitrary finite value

x20, the above equation holds if and only if

x20(0) = −
h−1∑
i=0

N iB2u
(i)(0). (B2)

When N = 0, the above relation becomes

x20(0) = −
h−1∑
i=0

N iB2u
(i)(0).

which is also in the form of (B2). Therefore, the set of consistent initial conditions is given by S.

Substituting (B2) into (B1) yields

x2(t) = −
h−1∑
i=0

N iB2u
(i)(t).

Thus, the classical solution is obtained as in Theorem 4. The proof is complete.

Appendix C Proof of Theorem 5

Proof. According to the definition of PC and (9), the RSDPS (4)-(5) with finite order is pulse controllable if and only if for

any initial value vector x20 ∈ X2 there exists an admissible control input vector u(t) ∈ Ch such that

h−1∑
i=1

δ(i−1)(t)[N ix20 +

h−1∑
k=i

NkB2u
(k−i)(0)] = 0. (C1)

Since δ(i)(t), i = 0, 1, 2, . . . , h− 2,are linear independent, the equation (C1) is equivalent to

N ix20 +

h−1∑
k=i

NkB2u
(k−i)(0) = 0, i = 0, 1, 2, . . . , h− 1. (C2)

Moreover, note the nilpotent property of the operator N , it is easy to prove that equations (C2) is equivalent to equation

Nx20 +

h−2∑
k=0

Nk+1B2u
k(0) = 0. (C3)

Therefore, equation (C3) is equivalent to equation (C1).

In order to complete the proof, we now need only to show that given the values u(k)(0) = u
(k)
0 , k = 0, 1, 2, . . . , h − 1 ,

satisfying (C3), there exists an admissible control input vector v(t) ∈ Ch such that

u(k)(0) = u
(k)
0 , k = 0, 1, 2, . . . , h− 1 (C4)

In fact, let v(t) =
h−1∑
k=0

1
k!
u
(k)
0 tk. Then v(t) is a polynomial satisfying (C4). This complete the proof.
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Appendix D Proof of Theorem 6

In order to prove Theorem 6, first of all, we need to prove the following lemma.

Lemma D Let F ∈ L(X2) and G ∈ L(U,X2). Then ranFG = ranF if and only if kerF + ranG = X2.

Proof. Necessity: Since ranFG = ranF , for any vector x ∈ X2, there exists vector y ∈ U such that Fx = FGy, which is

equivalent to F (x−Gy) = 0. Thus x−Gy ∈ kerF . Noting that Gy ∈ ranG, we obtain x = (x−Gy) +Gy ∈ kerF + ranG.

This implies that kerF + ranG = X2.

Sufficiency: If kerF +ranG = X2 , then, for arbitrary vector x ∈ X2 there exists vector y ∈ U , such that x−Gy ∈ kerF .

This implies that, for any x ∈ X2, there exists y ∈ U such that Fx = FGy, i.e.,ranFG = ranF .

Proof of Theorem 6. Conclusion (i) is obvious. Here, we only prove the conclusion (ii).

Proof of (A). According to Theorem 5, the subsystem (5) is pulse controllable if and only if for any initial value vector

x20 ∈ X2, there exists an admissible control input vector u ∈ Ch such that (C3) holds. This is actually equivalent to

condition (A).

Proof of the equivalence for (A)and (B). Since[
NB2 N2B2 · · · Nh−1B2 0

]
=

[
NB2 N2B2 · · · Nh−1B2 NhB2

]
= N

[
B2 NB2 · · · Nh−2B2 Nh−1B2

]
,

and

ran
[
NB2 N2B2 · · · Nh−1B2

]
= ran

[
NB2 N2B2 · · · Nh−1B2 0

]
,

we have

ran
[
NB2 N2B2 · · · Nh−1B2

]
= ranN

[
B2 NB2 · · · Nh−1B2

]
.

Thus, according to the above relation and Lemma D, we have that

ran
[
NB2 N2B2 · · · Nh−1B2

]
= ranN

[
B2 NB2 · · · Nh−1B2

]
= ranN

if and only if

kerN + ran
[
B2 NB2 · · · Nh−1B2

]
= X2.

Therefore (A) and (B) are equivalent.

Proof of the equivalence for (B)and (C). Since

ran
[
B2 NB2 · · · Nh−1B2

]
= ranB2 + ran

[
NB2 N2B2 · · · Nh−1B2

]
,

the condition (B) can be written as

kerN + ranB2 + ran
[
NB2 N2B2 · · · Nh−1B2

]
= X2.

Moreover, by using condition (A), we can obtain that condition (B) is equivalent to condition (C). The proof is complete.

Appendix E An illustrative example

In the following, an illustrative example is given, which shows the effectiveness of Theorem 6.

Consider the linear Navier-Stokes equations

xt(ξ, t) = µ△x(ξ, t)− y(ξ, t) + u(ξ, t), (ξ, t) ∈ Ω× [0,∞), (E1)

boundary condition,

x(ξ, t) = 0, (ξ, t) ∈ ∂Ω× [0,∞), (E2)

initial condition,

x(ξ, 0) = x0(ξ), ξ ∈ Ω, (E3)

∇ · x(ξ, t) = 0, (ξ, t) ∈ Ω× [0,∞), (E4)

where µ > 0,△ is the Laplace operator, Ω ⊂ Rn is a bounded domain with boundary ∂Ω of class C∞ [2],y(ξ, t) = ∇p is

the pressure gradient, and ∇ is the vector differential operator.

We denote H2(Ω) = {g : g ∈ L2(Ω), Dαg ∈ L2(Ω), |α| 6 2}, where L2(Ω) denotes the set of all Lebesgue measurable

functions, for any g ∈ L2(Ω),
∫
Ω ∥g(ξ)∥2dξ < ∞;Dα has the same sense as in [2].Let

H2 = (H2(Ω))n,H2
0 = {w : w ∈ H2, w(ξ) = 0, ξ ∈ ∂Ω},

L2 = (L2(Ω))n,L = {w : w ∈ (C∞
0 (Ω))n,∇ · w = 0},

where C∞
0 (Ω) has the same sense in [2],Hσ denotes the closure of the subspace L with respect the norm of the space L2. This

is a Hilbert space with the inner product of the space L2.L2 can be decomposed as direct sum Hσ
⊕

Hπ , where Hπ is the

orthogonal complement of Hσ . Let Pπ : L2 → Hπ denote the orthogonal projection corresponding to this decomposition.

The restriction of Pπ to the space H2
0 ⊂ L2 is a continuous operator P0 : H2

0 → H2
0. Therefore, H2

0 is the direct sum

H2
σ

⊕
H2

π , and H2
σ and H2

π are dense in Hσ and Hπ respectively, where H2
σ = kerP0,H

2
π = ranP0.

We replace (E4) with a more general equation (E5):

Pπx(ξ, t) = 0, (ξ, t) ∈ ∂Ω× [0,∞). (E5)
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Indeed, if x(ξ, t) is sufficiently smooth, then Pπx(ξ, t) = 0 implies (E4). Otherwise, by (E5),x(ξ, t) is the limit in L2 of

smooth functions satisfying condition (E4).

It is easy to observe that the formula B = diag[△,△, · · · ,△] determines a bounded linear operator B : H2
0 → L2 with

discrete spectrum σ(B); this spectrum has finite multiplicity and condenses only at −∞.

Let Bσ = B|H2
σ
, Bπ = B|H2

π
,Σ = I − Pπ , then Bσ ∈ L(H2

σ ,Hσ), Bπ ∈ L(H2
π ,Hπ); let

X = Hσ ×Hπ ×Hy,Hπ = Hy , Z = U = Hσ ×Hπ ×H2
π ,

then for x =


xσ

xπ

xy

 ∈ X, we have that E =


Iσ 0 0

0 Iπ 0

0 0 0

 : X → Z is a bounded linear operator with kerE = {0} ×

{0} × Hy , and ranE = Hσ × Hπ × {0}, A =


µBσ 0 0

0 µBπ −Iπ

0 −Iπ 0

 : X → Z is a closed and densely defined operator

with domA = H2
σ × H2

π × Hy , where I, Iσ and Iπ denote the identical operators on L2,Hσ and Hπ respectively. Let

x(ξ, t) = x(t)(ξ), y(ξ, t) = y(t)(ξ), u(ξ, t) = u(t)(ξ),
xσ(t)(ξ)

xπ(t)(ξ)

xy(t)(ξ)

 =


Σx(t)(ξ)

Pπx(t)(ξ)

y(t)(ξ)

 , u(t)(ξ) =


uσ(t)(ξ)

uπ(t)(ξ)

uy(t)(ξ)

 .

Then (E1)-(E3) and (E5) can be written as
Iσ 0 0

0 Iπ 0

0 0 0



ẋσ(t)

ẋπ(t)

ẋy(t)

 =


µBσ 0 0

0 µBπ −Iπ

0 −Iπ 0



xσ(t)

xπ(t)

xy(t)

+


uσ(t)

uπ(t)

uy(t)

 ,


xσ(0)

xπ(0)

xy(0)

 =


Σx(0)

Pπx(0)

y(0)

 . (E6)

Let

P =


Iσ 0 0

0 Iπ µBπ

0 0 −Iπ

 , Q =


Iσ 0 0

0 0 Iπ

0 −Iπ 0

 , I1 = Iσ ,

N =

[
0 Iπ

0 0

]
,K = µBσ , I2 =

[
Iπ 0

0 Iπ

]
, B2 =

[
0 Iπ µBπ

0 0 −Iπ

]
.

Then P is injective and Q is bijective,PEQ =

[
I1 0

0 N

]
, PAQ =

[
K 0

0 I2

]
, N is a nilpotent operator with order 2, K is the

generator of the strongly continuous semigroup eKt [2], and

ranN = ran

[
0 Iπ

0 0

]
= ran

[
0 0 −Iπ

0 0 0

]
= ran[NB2].

Hence linear Navier-Stokes equations (E1)-(E4) are P-controllable by Theorem 6.

Appendix F Analysis of the Latest Research

Controllability is the property of being able to steer between two arbitrary points in the state space. In infinite dimensions,

the situation is more complex, and many different types of controllability have been studied in the literature (for example,

exact controllability, approximate controllability, exact null controllability, and so on). These properties are very important

for studying the infinite dimensional systems, but it is regrettably that none of these results regarding controllability

discussed pulsive behavior. In fact, for singular distributed parameter systems, there may be pulse terms in their solutions.

In a practical system, the pulse term is generally undesirable in the solutions, since pulse may stop the system from working

or even destroy it. Therefore, it requires that we must eliminate these pulse terms by imposing appropriate control input.

In view of this fact, in this paper, the concept of pulse controllability of regular singular distributed parameter systems

with finite order is considered in Banach space. The impulse observability of regular degenerate evolution systems is

discussed in [3]. According to this paper, we can discuss the dual problem of impulse observability of the regular degenerate

evolution systems. The solvability of degenerate linear evolution equations with the Riemann-Liouville fractional derivative

is discussed in [4]. According to this paper, we can discuss the distributional solution and pulse controllability of degenerate

linear evolution equations with the Riemann-Liouville fractional derivative. Hence, the concept of pulse controllability of

regular singular distributed parameter systems is the basis for the study of the pulse controllability of other degenerate

linear evolution equations.

Appendix G Dirac Function

Dirac function δ(t) and the δ(i)(t) (the ith derivative of δ(t)) are the generalized functions. For the details, see [5].
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