
1 The security proof of the protocol

1.1 Security in the hybrid model

The F-hybrid model is informally described as [1]: consider a protocol π that operates in a hybrid model
of computation where parties can communicate as usual, and in addition have ideal access to an unbounded
number of copies of some ideal functionalities F . According to the model, the communication channels are
public, which means that the adversary can see all the message sent, and deliver or block these messages at
will. In the protocol, we assume that the adversarys computational power is P.P.T.. We will prove the security
of our two-party signing protocol in the Fzk and Fcom−zk hybrid model. According to the contributions of [2]
and [3], we can conclude that working in this model is soundness.

1.2 Proof of Security

As stated in [4], there are two approaches for capturing the security properties of signature algorithms. The
first one is, in [5], they proposed a widely accepted security requirement of a digital signature algorithm, called
existential unforgeability against chosen message attacks. Specifically, the requirement is that, if both the
public and private keys are generated honestly, then the signatures generated honestly also will always pass the
verification algorithm; and in addition, it will be infeasible for an adversary to produce a new signature, i.e., a
message m that has not been signed before, and an alleged signature σ, such that σ will pass the verification
algorithm as a valid signature for m with respect to the given public key. This kind of security is usually proven
based on the game-based definition as presented in [6].

The second approach is via emulating an ”ideal signature process” in an ideal-process-based general frame-
work for analyzing security of protocols [3]. In this approach, one first formulates an ”ideal signature func-
tionality” that captures the desired security properties of signature algorithms in an abstract way. A signature
algorithm is said to be secure if it ”emulates” the ideal signature functionality. Emulation means that for any
adversary Adv attacking a real protocol execution, there should exist an ”ideal process adversary” or simulator
Sim, that causes the outputs of the parties in the ideal process to be essentially the same as the outputs of the
parties in a real execution [1]. The reason that why this ideal-model based analysis of signature algorithms is
of interest is that it provides very strong secure composability properties. Furthermore, the equivalence of the
two approaches has been proved in [4].

In this section, we prove that Protocol constitutes a secure two-party signing protocol based on SM9-DSA.
The proof is under standard assumption using simulation-based definition, i.e. the second approach. And we
prove security in the presence of malicious adversaries and static corruptions.

1.2.1 Definition of Security

For a digital signature algorithm, the same public/private key pair is used for signing many messages. So in
the security proof of our two-party signing protocol, we formalize an ideal functionality [3] instead of a trusted
third party [2] to define the security.

We first define an ideal functionality FSM9−DSA formally in Figure 1.

Figure 1: The SM9-DSA Functionality FSM9−DSA

1.2.2 Proof of Security

Theorem 1 The protocol securely computes FSM9−DSA in the (Fzk, Fcom−zk)-hybrid model in the presence
of a malicious static adversary, assume that the Paillier encryption scheme is indistinguishable under chosen-
plaintext attacks, and ECDLP (Elliptic Curve Discrete Logarithm Problem) is hard.

1

Proof 1.1 Below, we first prove the security for the case that A1 is corrupted. Let Adv be an adversary who
has corrupted A1, we construct a simulator Sim working as follows:

• Simulating - corrupted A1:

(1) Upon input Sign(sid,M, dsA1
), simulator Sim sends Sign(sid,M, dsA1

) to FSM9−DSA and receives
back (h, S).

(2) Sim invokes Adv upon input Sign(sid,M, dsA1
) and receives (com-prove, sid||1, g1, r1) as Adv

intends to send to FRDL

com−zk.

(3) Sim computes an element g = e(P1, Ppub−s) of group GT , and verifies that g1 = gr1 . If yes, then it
do as follows:

(a) computes another element t = gh of group GT and an integer h1 = H1(IDA||hid,N).

(b) computes an element P = h1 · P2 + Ppub−s of group G2.

(c) computes elements u = e(S, P) and ω = u · t of group GT .

(d) computes g′2 = ωr−1
1 .

If no, then Sim just chooses a random g′2.

(4) Sim internally hands (proof, sid||2, g′2) to Adv as if sent by FRDL

zk .

(5) Sim receives (decom-proof, sid||1, g1) as Adv intends to send to FRDL

com−zk, (prove, sid||1, n, (p1, p2))

as Adv intends to send to FRPE

zk , and (prove, sid||1, (c1, pk, g1), (r1, sk)) as Adv intends to send to

FRPEDL

zk .

(6) Sim checks that g1 = gr1 , pk = n = p1 · p2, and c1 = Encpk(r1). Once one of the three equations
does not holds, Sim simulates A2 aborting and sends abort to the trusted party computing FSM9−DSA.
Otherwise, it continues.

(7) Sim chooses a random r4 ∈ [1, N − 1], computes c′3 = Encpk(r4) and c′4 = (c′3)−1 · ds−1A1
· S, and

internally hands c′3 and c′4 to Adv.

The differences between the view of Adv in a real execution and in the simulation includes:

(1) the way that g2 is generated: in a real execution, A2 chooses a random r2 and computes g2 = gr2 ;

while in the simulation, Sim computes g′2 = ωr−1
1 . However, since ω = gr where r is randomly chosen,

the distribution over gr2 and ωr−1
1 are identical.

(2) Sim simulates A2 aborting if g1 6= gr1 or pk = n 6= p1 · p2 or c1 6= Encpk(r1), while in the real
execution, A2 aborts when the ZK proofs of RDL or RPE or RPEDL are not accepted. By the soundness
of these proofs, this difference is at most negligible.

(3) the way that c3 and c4 are generated: in a real execution, A2 chooses a random r3 ∈ [1, N − 1],
and computes c2 = Encpk(h), c3 = Encpk(r3(r1r2 − h)) (using the homomorphic property of Paillier
encryption), c4 = r−13 · dsA2 . While in the simulation, Sim chooses a random r4 ∈ [1, N − 1], computes
c′3 = Encpk(r4) and c′4 = (c′3)−1 · ds−1A1

· S. However, due to the Paillier encryption is indistinguishable
under chosen-plaintext attacks, the encryption of r4 and r3(r1r2 − h) are indistinguishable since both r4
and r3(r1r2−h) are randomly distributed over [1, N−1]. In addition, due to the ECDLP is hard, r−13 ·dsA2

and (c′3)−1 · ds−1A1
· S = (c′3)−1 · (r1r2 − h) · dsA2 are indistinguishable.

Thus, we can gain the conclusion that the joint distribution of Adv’s view and A2’s output in the ideal
simulation is statistically close to the distribution in the real execution. Specifically, we have that

((g′2, c
′
3, c
′
4), (r, S)) ≡c ((g2, c3, c4), (r, S)).

That is, for any P.P.T. (probabilistic polynomial time) distinguisher D, we have

Pr[D((V IEWAdv(dsA1
), OP (dsA1

, dsA2
)), (V IEWA1

(dsA1
), OP (dsA1

, dsA2
))) = 1] ≤ 1

poly(N)

where OP denotes OUTPUT . The proof of this simulation case is completed.

Now, we prove the security for the case that A2 is corrupted. Let Adv be an adversary who has corrupted
A2, we construct a simulator Sim working as follows:

2

• Simulating - corrupted A2:

(1) Upon input Sign(sid,M, dsA2), simulator Sim sends Sign(sid,M, dsA2) to FSM9−DSA and receives
back (h, S).

(2) Sim computes c′1 = Encpk(r̃1) for a random r̃1 ∈ [1, N − 1] with pk sent by A1, and internally

hands Adv the message (proof-receipt, sid||1) as if sent by FRDL

com−zk, and the message (pk, c′1) as if sent
by A1.

(3) Sim receives (prove, sid||2, g2, r2) as Adv intends to send to FRDL

zk .

(4) Sim computes an element g = e(P1, Ppub−s) of group GT and verifies that g2 = gr2 . If yes, then it
do as follows:

(a) computes another element t = gh of group GT and an integer h1 = H1(IDA||hid,N).

(b) computes an element P = h1 · P2 + Ppub−s of group G2.

(c) computes elements u = e(S, P) and ω = u · t of group GT .

(d) computes that g′1 = ωr2 .

If no, it simulates A1 aborting and halts.

(5) Sim hands Adv the message (decom-proof, sid||1, g′1) as if sent by FRDL

com−zk.

(6) Sim runs the simulator for the ZK proof of relation RPEDL for common statement (c′1, pk, g
′
1) and

with the residual Adv as verifier.

(7) Sim receives c3 and c4 from Adv. Then it computes c2 = Encpk(r̃1r2 − h), and verifies that
c2 · dsA2

= c3 · c4. If yes, Sim outputs the signature; otherwise, Sim simulates A1 aborting.

The differences between the view of Adv in a real execution and in the simulation includes:

(1) the computing of c1: in a real execution, c1 = Encpk(r1) where g1 = gr1 ; while in the simulation,
c′1 = Encpk(r̃1) for a random r̃1. However, because Sim uses the same pk as A1, the indistinguishability of
this simulation follows from a straightforward reduction to the indistinguishability of the Paillier encryption
scheme, under chosen-plaintext attacks.

(2) the simulation of the ZK proof of relation RPEDL. The indistinguishability is guaranteed by the ZK
property of the proof. See details in [6].

(3) the way that g1 is generated: in a real execution, A1 chooses a random r1 and computes g1 = gr1 ;

while in the simulation, Sim computes g′1 = ωr−1
2 . However, since ω = gr where r is randomly chosen,

the distribution over gr1 and ωr−1
2 are identical.

Thus, we can gain the conclusion that the distribution of Adv’s view in the ideal simulation is statistically
close to the distribution in the real execution. As for the output of A1, in the real execution, A1 checks that c3
and c4 are computed correctly by verifying whether the final signature is valid; while in the simulation, Sim,
without knowing sk, can not decrypts c3. However, Sim can check that c3 and c4 are computed correctly by
computing c2 = Encpk(r̃1r2 − h), and verifying that c2 · dsA2

= c3 · c4. If c2 · dsA2
= c3 · c4 holds, it means that

using c3 and c4 sent by Adv can get the correct final signature. A little formally, we have that

((c′1, g
′
1), (r, S)) ≡c ((c1, g1), (r, S)).

That is, for any P.P.T. distinguisher D, we have

Pr[D((V IEWAdv(dsA2
), OP (dsA1

, dsA2
)), (V IEWA2

(dsA2
), OP (dsA1

, dsA2
))) = 1] ≤ 1

poly(N)

This completes the proof of this simulation case.

3

References

[1] Canetti, Lindell Yehuda, Ostrovsky Rafail, et al. Universally composable two-party and multi-party secure
computation. Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing, 2002.
494-503

[2] R Canetti. Security and Composition of Multiparty Cryptographic Protocols. Journal of Cryptology, 2000,
13: 143–202

[3] R Canetti. Universally composable security: a new paradigm for cryptographic protocols. In: Proceedings
2001 IEEE International Conference on Cluster Computing, Newport Beach, CA, 2001. 136-145

[4] R Canetti. Universally composable signature, certification, and authentication. In: 17th IEEE Computer
Security Foundations Workshop, Pacific Grove, CA, USA, 2004. 219-233

[5] Goldwasser Shafi, Micali Silvio, Rivest R L. A digital signature scheme secure against adaptive chosen-
message attacks. Siam Journal on Computing, 1988, 17: 281-308

[6] Lindell Yehuda. Fast secure two-party ECDSA signing. In: Advances in Cryptology, Cham, 2017. 613-644

4

