
SCIENCE CHINA
Information Sciences

. Supplementary File .

An effective scheme for top-k frequent itemset
mining under differential privacy conditions

Wenjuan Liang1,2, Hong Chen1, Jing Zhang1*, Dan Zhao1 & Cuiping Li1

1Key Lab of Data Engineering and Knowledge Engineering of MOE, Renmin University of China, Beijing 100872, China;
2College of Computer and Information Engineering, Henan University, Kaifeng 475001, China

Appendix A Algorithm description

Algorithm A1 Transaction Splitting by Count Estimation

Input: δ, F̂ , P̂ , ti, lopt, λ, ϵ1
Output: a set of short transactions R

1: CS = F̂
∪
P̂ ;

2: for l=3 to δ do

3: for each itemset e of ti s.t. |e| = l do

4: Calculate Cmax(e), Cmin(e) based on its (l − 1) frequent patterns in CS, ϵ1;

5: if Cmax(e) > λ|D| then
6: CS = CS ∪ {(e, Cmax(e), Cmin(e))}.
7: end if

8: end for

9: end for

10: m = ⌈|ti|/lopt⌉. //the number of short transactions after splitting.

11: for i=1 to m do

12: ttemp = {ϕ}; j = |ttemp|; //a short transaction being generated.

13: while j < lopt do

14: Update f(e)·weight of each e in CS.

15: Find emax with highest weight both in CS and ti.

16: if |ttemp ∪ emax| 6 lopt then

17: ttemp = ttemp ∪ emax; ti = ti − {emax};j+ = |emax|; Remove emax from CS;

18: else

19: add ttemp to R; break;

20: end if

21: end while

22: end for

The splitting process can be seen Algorithm A1. First we privately estimate CS of each long transaction ti, and determine

the number of short transactions after splitting (line 1-12). Next we construct an optimal short transaction ttemp as follows

(line 13-24): (1) ttemp is initialized to {ϕ}; j denotes the length of ttemp. (2) If j is less than lopt, we first check wether j is

greater than 0, if yes, we need to update the support of each itemset in CS. Next we find emax with the highest weight that

both contained in current CS and ti. (3) Join emax into ttemp, remove it from CS and update ti and j. (4) Repeat (2)-(3)

*Corresponding author (email: Zhang-jing@ruc.edu.cn)

, et al. Sci China Inf Sci 2

Algorithm A2 Release based on weighted reservoir sampling and EM

Input: D, ϵ2, λ, k

Output: F̂ Ik
1: ϵ′ = ϵ2

2k

2: for each e in candidate frequent patterns of D do

3: if C(e) < λ|D| then
4: Eliminate e from candidate frequent patterns.

5: else

6: Cr(e) =
C(e)
Rm(e) //update the support based on equation (B2)

7: e.score = exp(ϵ
′Cr(e)
2k). //calculate the score of e

8: r = Random(). //generate a random number between (0 ∼ 1)

9: e·sw = 1/re.score. //calculate the sampling weight of e

10: Finding the maximum weight emax in reservoir.

11: if |reservoir| < k or e·sw > emax then

12: Add or replacing an element in reservoir with (e, Cr(e), e·sw).

13: end if

14: end if

15: end for

16: F̂ Ik = {e|(e, Cr(e)) ∈ reservoir}.
17: for each e in F̂ Ik do

18: Cr(e)+ = Lap(2k/ϵ′)). //add LM noise to the support of e

19: end for

20: Return F̂ Ik.

until |ttemp| satisfies the length constraint. When one optimal short transaction is generated, we update ti and repeat the

process of finding an optimal short transaction until all elements of ti are allocated. Detailed process of sampling top-k

frequent patterns under differential privacy can be seen in Algorithm A2.

Appendix B Information loss analysis of splitting

Splitting may cause information loss, because the support of some itemsets decreases after splitting. We approximate

information loss by analyzing random splitting. Suppose the length of a long transaction t is l(l > lopt) and t contains an

i-itemset X. The length constraint on transactions is lopt. From work [23] we can get the probability of an i-itemset X

remaining in the truncation transaction is:

Prtruncate(i,l)(X) =

(
l−i

lopt−i

)(
l

lopt

) (B1)

Based on Equation (B1), we analyze the probability that X remains in ⌈l/lopt⌉ short transactions after splitting. After

splitting t, there are ⌊l/lopt⌋ short transactions whose length is lopt and one short transaction whose length may be smaller

than lopt. Let a = l− ⌊l/lopt⌋ be the number of items in the short transaction with length smaller than lopt.

If a < i, the probability of an i-itemset X remaining in one of ⌊l/lopt⌋ short transactions is(
⌊l/lopt⌋

1

)(l−i
lopt−i

)(
l

lopt

) =
⌊l/lopt⌋

(
l−i

lopt−i

)(
l

lopt

)
If a > i, the probability that X remains in the last short transaction whose length is smaller than lopt is

(
l−i
a−i

)
(
l
a

) , so the

total probability that X remains in all short transactions of t is
⌊l/lopt⌋

(
l−i

lopt−i

)
(

l
lopt

) +

(
l−i
a−i

)
(
l
a

) .

So after splitting, the probability that X remains in ⌈l/lopt⌉ short transactions is

Prsplit(i,l)(X) =


⌊l/lopt⌋

(
l−i

lopt−i

)
(

l
lopt

) if a < i

⌊l/lopt⌋
(

l−i
lopt−i

)
(

l
lopt

) +

(
l−i
a−i

)
(
l
a

) if a 6 i

, et al. Sci China Inf Sci 3

We assume a uniform distribution among transactions with different cardinality containing the itemset X. Suppose the

total number of transactions in the database is n. Let fk be the number of transactions of length k containing i-itemset X.

Let µ be the actual support of x, and µ′ be the support of X after splitting. µ′ is a random variable. The expectation of

µ′ is

E(µ′) = µ · (
lopt∑
k=i

fk∑n
j=1 fj

+

n∑
k=lopt+1

fk∑n
j=1 fj

· Prsplit(i,l)(X))

The remaining information rate of i-itemset X after splitting is

Rm(X) =

lopt∑
k=i

fk∑n
j=1 fj

+
n∑

k=lopt+1

fk∑n
j=1 fj

· Prsplit(i,l)(X)) (B2)

Appendix C Comparison with existing splitting method

Our splitting process is more efficient than existing splitting method. Existing splitting method PFP [25] is implemented

by the following steps: (1)Scan the database for the first time to get the support of 2-itemset. (2)Based on the above

statistics, construct an undirected weighted graph. (3)Identify the communities in the graph, and use them to construct the

correlation tree (CR-Tree) to measure the correlation of all items. (4)Based on CR-Tree, scan the database for the second

time to split long transactions. The reasons of inefficiency of PFP are as follows: (1)The number of database scanning is

2. (2)The communities mining is inefficient, since the number of items in the database is large. (3)CR-Tree contains the

relations of all items in the database. When splitting each long transaction, they have to search the relations of all items in

CR-Tree. The search space is too large. In fact, there is no need to use the relations of all items to split a long transaction.

Our method can solve the above problem: (1)The number of database scanning is reduced to 1. From our experimental

datasets, we can get that most transactions in the database are short; the statistics of short transactions can reflect the

relations of all items. So we use the statistics of short transactions to do the count estimation. (2)For each long transaction,

we only need to estimate the relations of its frequent items and do not need to find the relations of all items in the database.

(3)When splitting a long transaction, the search space is its estimated frequent patterns instead of the relations of all items

in CR-Tree, the search space is reduced.

Appendix D Privacy Analysis

Theorem 1. Algorithm A2 satisfies ϵ2-differential privacy.

Proof. Let (e1, e2, · · · , ek) represent the top-k frequent patterns extracted from the database D using the reservoir

sampling, and Pr(e1, e2, · · · , ek|D) represents the probability of extracting k patterns from the database D. We can get

Pr(e1, e2, · · · , ek|D) =

k∏
i=1

exp(
ϵ′C(ei,D)

2△C
)∑

ei∈FI exp(
ϵ′C(ei,D)

2△C
)

C(ei, D) is the count of the pattern ei in database D, △C is the global sensitivity.

If we can prove
Pr(e1,e2,··· ,ek|D)
Pr(e1,e2,··· ,ek|D′) 6 exp(ϵ2/2), which means that the probability ratio of sampling k patterns from

neighbor databases D and D′ is no greater than exp(ϵ2/2), we can get the result that the sampling process in Algorithm

A2 satisfies ϵ2/2-differential privacy. The proof contains two steps: Firstly, we need to prove
Pr(ei|D)
Pr(ei|D′) 6 exp(ϵ′), which

means that the probability ratio of extracting one pattern from neighbor database D and D′ is no greater than exp(ϵ′).

Secondly, we need to prove the probability ratio of sampling k patterns is no greater than ϵ2/2. The proof of the first step

is as follows.

Pr(ei|D)
Pr(ei|D′) =

exp(
ϵ′C(ei,D)

2△C
)∑

ei∈FI exp(
ϵ′C(ei,D)

2△C
)

exp(
ϵ′C(ei,D

′
)

2△C
)∑

ei∈FI exp(
ϵ′C(ei,D

′)
2△C

)

=
exp(

ϵ′C(ei,D)
2△C

)

exp(
ϵ′C(ei,D

′)
2△C

)
×

∑
ei∈FI exp(

ϵ′C(ei,D
′)

2△C
)∑

ei∈FI exp(
ϵ′C(ei,D)

2△C
)

6 exp(ϵ
′

2
)× exp(ϵ

′

2
)×

∑
ei∈FI exp(

ϵ′C(ei,D)
2△C

)∑
ei∈FI exp(

ϵ′C(ei,D)
2△C

)

= exp(ϵ′)

, et al. Sci China Inf Sci 4

The proof of the second step is as follows.

Pr(e1,e2,··· ,ek|D)
Pr(e1,e2,··· ,ek|D′) =

∏k
i=1

exp(
ϵ′C(ei,D)

2△C
)∑

ei∈FI exp(
ϵ′C(ei,D)

2△C
)

∏k
i=1

exp(
ϵ′C(ei,D

′)
2△C

)∑
ei∈FI exp(

ϵ′C(ei,D
′)

2△C
)

=
∏k

j=1

exp(
ϵ′C(ei,D)

2△C
)

exp(
ϵ′C(ei,D

′)
2△C

)
×

∑
ei∈FI exp(

ϵ′C(ei,D
′)

2△C
)∑

ei∈FI exp(
ϵ′C(ei,D)

2△C
)

=
∏k

j=1
Pr(ei|D)
Pr(ei|D′) 6

∏k
j=1 exp(ϵ

′) = exp(k · ϵ′) = exp(ϵ2/2)

According to the above proof, we can get the process of sampling k patterns based on EM satisfies ϵ2/2-differential

privacy. Since the process of applying LM noise to top-k frequent patterns satisfies ϵ2/2-differential privacy, Algorithm A2

satisfies ϵ2-differential privacy.

Theorem 2. Our scheme satisfies ϵ-differential privacy.

Proof. Our proposed scheme consists of Algorithm A1 and Algorithm A2. Algorithm A1 satisfies ϵ1 differential privacy.

From Theorem 1, Algorithm A2 satisfies ϵ2 differential privacy. According to the sequential composition, our scheme satisfies

ϵ = ϵ1 + ϵ2 differential privacy.

Appendix E Experiments

In this section, we verify data utility and efficiency of our proposed scheme on real datasets. We conduct all experiments

on a PC with Intel(R) Core(TM) i7-3540M CPU (3.00Ghz) and 8G RAM.

Comparison. We compare our algorithm with two state-of-the-art algorithms in [25] and [26]. We use Diff-FIMCE

to denote our algorithm, while PFP and PrivSuper denote the above two algorithms respectively. All algorithms are

implemented in Java. Since algorithms involve randomization, we ran each algorithm ten times to obtain its average

performance.

Metrics. To evaluate the performance of our algorithm, we employ the running time (the time period between input

and output) to measure the efficiency, and employ the standard metrics F-score [23] to measure the utility of generated

frequent itemsets.

Datasets. Real datasets we used in experiments are PUMSB [30], POS [31], BMS-WebView-1(WV1) [31] and BMS-

WebView-2(WV2) [31]. Detailed information of datasets is shown in Table E1.

Table E1 Detailed information of datasets

Dataset |D| |I| Max|t| Avg|t|
PUMSB 49046 2088 63 50

POS 515597 1657 164 6.5

BMS-WebView-1(WV1) 59602 497 267 2.5

BMS-WebView-2(WV2) 77512 3340 161 5.0

|D| is the number of records of a dataset, |I| is the number of distinct items, Max|t| and Avg|t| denote the maximal

and the average record length respectively.

Appendix E.1 Effect of lopt

In our scheme, the optimal length lopt is set to the value that the percentage of the transactions with cardinality no greater

than lopt is at least η percentage. With the change of η, we observe the utility of the release result of our scheme on four

datasets. The parameters used here are set as: λ is 0.08 on POS, 0.7 on PUMSB, 0.01 on WV1 and 0.012 on WV2. α and

γ are 0.5. ρ is 0.01. ϵ is 1. η varies from 0.5 to 0.9. From Fig E1, we can see, when η is small, the results on F-score are

poor(0.6-0.72). This is because lots of information is lost due to the transformation of the database. Then, the utility is

improved as η increases from 0.5 to 0.8. When η increases to 0.8, the F-Scores on four datasets achieve highest(0.86-0.93).

When the constraint is larger than 0.8, the utility has fallen slightly(0.7-0.83). This is because more noise is required

according to differential privacy. It offsets the gains obtained by preserving information, which decreases the quality of the

results.

Appendix E.2 Utility

In this experiment, we compare the utility of three algorithms. The parameters we used here are set as follows: λ is set

to 0.08 on POS and 0.7 on PUMSB, 0.01 on WV1 and 0.012 on WV2. γ is 0.5, ρ is set to 0.01, η is set to 0.8. α varies

from 0.1 to 0.9, k varies from 10 to 200, ϵ varies from 0.5 to 1.5. With the change of α, we observe the effect on the utility

, et al. Sci China Inf Sci 5

Figure E1 Effect of lopt(F-Score vs. η) Figure E2 Effect of α on utility

of our proposed scheme (Diff-FIMCE). With the change of k and ϵ, we observe the utility of the three algorithms on four

datasets.

Figure E3 Utility Evaluation

Effect of α on utility. We observe the utility of Diff-FIMCE on four datasets with the change of α. Here we set ϵ = 1 and

k = 100. From Fig.E2, we can see, when α varies from 0.1 to 0.2, the results on F-score are relatively poor(< 0.75). This

is because the magnitude of noise added to transaction splitting is too large, which results in a larger information loss and

affects the accuracy of the release result. When α varies from 0.3 to 0.7, the results on F-score are relatively good(0.83-0.93).

When α varies from 0.7 to 0.9, the utility becomes lower(< 0.8). The main reason is that when privately sampling top-k

frequent itemsets based on EM, too much noise is added to the support of the patterns and affects the accuracy.

Effect of k on utility. We set ϵ = 1, α = 0.5 and observe the utility of Diff-FIMCE, PrivSuper and PFP with different

values of k on four datasets. From Fig.E3 (a)-(d), we can see that the F-Scores of Diff-FIMCE always higher than that of

PrivSuper(+3-5%) on each dataset in all cases. This is because we split long transactions instead of random truncation,

the information loss is much lower. The F-Scores of Diff-FIMCE always higher than that of PFP(+5-9%). Comparing with

PFP, when splitting we consider only frequent patterns of this transaction instead of the relationship of all items, so it is

much more accurate. PrivSuper performs better than PFP(+2-4%), this is because PrivSuper directly searches for maximal

frequent itemsets, and subsequently adds their sub-itemsets to the results without additional privacy budget consumption.

With the increase of k, the F-scores of the three algorithms are all reduced. This is because the amount of added noise is

greater.

Effect of ϵ on utility. We set k = 100, α = 0.5 and observe the utility of three algorithms with varying the privacy

budget ϵ from 0.5 to 1.5 on four datasets. From Fig.E3 (e)-(h), we find that Diff-FIMCE always achieves better performance

than the other two algorithms(+3-10%) for the same privacy level. The F-scores of PrivSuper are always higher that of

PFP(+2-5%), this is because they only add noise to the maximal frequent itemsets and thus reduces the sensitivity of the

, et al. Sci China Inf Sci 6

private release. With the decrease of privacy budget, the values of three algorithms on F-score are decreasing. The reason

is that more noise is added to the computation of frequent patterns. For the same privacy budget, the value of F-scores on

POS and WV1 are higher than the values on PUMSB and WV2. This can be explained by less high support of itemsets in

POS and WV1, which causes less information loss in transaction splitting.

Appendix E.3 Efficiency

In this experiment, we compare the execution time of three algorithms. The parameters we used in this experiment are set

as follows: The privacy budget ϵ is set to 1.0. α and γ are 0.5. ρ is set to 0.01, η is set to 0.8. λ is set to 0.08 on POS and

0.7 on PUMSB, 0.01 on WV1 and 0.012 on WV2. k varies from 10 to 200. With the change of k , we observe the efficiency

of three algorithms on four datasets.

Figure E4 Efficiency Evaluation

Effect of k on efficiency. From Fig.E4 (a)-(d), we can observe the running time of three algorithms on four datasets

respectively with the increase of k. We can see that Diff-FIMCE performs better than PrivSuper, the running time of Diff-

FIMCE is always lower than that of PrivSuper about 8-50s. This is because PrivSuper needs to perform the FIM algorithm

twice, which consumes too much time. The first time is performing an no private FIM algorithm to get the statistics of the

true top-k frequent itemsets, which will be used to save the privacy budget in the next privately release; the second time

is performing a FIM algorithm in a differential privacy way by using the above statistics to get the noisy top-k frequent

itemsets. From the figures, we can also see that Diff-FIMCE is more efficient than PFP. The running time of Diff-FIMCE is

always lower than that of PFP about 145-255s. The reason for low efficiency of PFP is that it needs to find the correlation

of all items in advance and uses the relation to guide the splitting. Their splitting method is too inefficient, it always

consumes several hundreds of seconds on each dataset. We has improved the efficiency of the transaction splitting method,

the core idea of our method is finding the relations of frequent items in each long transaction based on count estimation,

which can reduce the preprocessing time and the number of database scanning. Moreover, we employ weighted reservoir

sampling combing with EM to further improve the efficiency of the privately release. Therefore, Diff-FIMCE performs best.

With the increase of k, the running time of three algorithms on four datasets are all increasing. This is because the size of

candidate frequent item sets becomes larger, which consumes much more time to do the mining.
Benefit of splitting based on count estimation. To better understand the benefit of transaction splitting based on

count estimation, we apply it to PFP by replacing its method of transaction splitting. Let PFP+CE denote the modified

scheme. We compare the running time of PFP and PFP+CE with different values of k on PUMSB and POS. The parameters

we used are set as: ϵ is 1.0, λ is set to 0.08 on POS and 0.7 on PUMSB, 0.01 on WV1 and 0.012 on WV2, α and γ are 0.5, ρ

is 0.01, η is 0.8, k varies from 10 to 200. From Fig.E4(e)-(f), we can see that the modified scheme PFP+CE performs better

performance than PFP on each dataset, the running time of PFP+CE can save at least 200s comparing with PFP. The

main reason is that we split long transactions based on count estimation instead of the correlation of all items in database,

, et al. Sci China Inf Sci 7

which reduces the preprocessing time. PFP needs to find the correlation of all items in the preprocessing, which always

consumes hundreds of seconds and results in lower efficiency. PFP+CE scans the database only once and needs a little

preprocessing time, its efficiency is higher.
Benefit of weighted reservoir sampling. To better understand the benefit of weighted reservoir sampling, we apply it

to TF [22] by replacing its sampling method of EM. TF [22] is a private top-k release scheme based on EM by considering

the frequent patterns with length no greater than l. Let TF+reservoir denote the modified scheme. Next we compare the

running time of TF and TF+reservoir with different values of k on on PUMSB and POS. The parameters we used are set

as: ϵ is 1.0, k varies from 10 to 200. To better observe the performance , we set λ to 0.04 on POS and 0.5 on PUMSB.

Since the more the candidate frequent patterns the higher the difference of the two methods. From Fig.E4(g)-(h), we can

see that the modified scheme TF+reservoir performs better performance than TF on each dataset, its running time can be

saved about 8-20s. TF privately releases top-k frequent patterns based on EM and its core strategy is weighted random

sampling. It needs to traverse the frequent itemsets twice. TF+reservoir only needs to traverse the frequent itemsets only

once, it is more efficient.

Appendix F Related works

Recently, more and more works have begun addressing privacy preserving of different data mining tasks [4], such as

classification [35], clustering [5, 34] and frequent patterns mining. We focus on summarizing privacy preserving of frequent

itemsets mining (PPFIM). These works can be divided into three categories:

[Secure computation] A number of schemes for PPFIM have been proposed based on secure computation. They

focus on the privacy preservation of FIM in a distributed environment or in an outsourcing scenario. For example, in a

distributed environment, the works in [6, 7] employ secure computation of scalar products to find global frequent itemsets

across vertically partitioned data. Clifton et al. [8] employ secure multi-party computation to find global frequent itemsets

across horizontally partitioned data. When the task of FIM is outsourced, Wong et al. [9, 10] propose a secure encryption

scheme based on item mapping for privacy preservation in frequent itemset mining. Evfimievski et al. [11] design some

random operations to protect the privacy of FIM. These works are different from our work, they all focus on avoiding privacy

leakage during collaborative computations among multiple parties, while we focus on the release of frequent itemsets itself

does not leak private information in a centralized scenario.

[K-anonymity] There are some schemes for FIM based on k-anonymity. k-anonymity means for any transaction ti in a

dataset, and for any subset of m items in ti, there are at least k−1 other transactions with the same m items. Atzori et al. [12]

studies how to eliminate re-identification attacks for frequent patterns mining based on k-anonymity. Xu et al. [13] propose

a (h, k, p)-coherence anonymity framework to release frequent itemsets. Hua et al. [14] propose a k-support anonymity

scheme based on pseudo taxonomy for FIM. Several anonymity works for pubishing transactional data are also loosely

related to our work. [15] presents a rule-based anonymity model for publishing transactional dataset. [16–18] propose some

anonymity schemes with a reduced information loss and a lower computational complexity of the anonymization process. [19]

studies the privacy breach caused by unsafe correlations in transactional data where individuals have multiple tuples in a

dataset. [32] studies a new technique ensuring privacy in big data: K-anonymity without prior value of the threshold k. [33]

proposes an efficient scheme based on K-anonymity. [36, 37] study how to reduce side effects of hiding sensitive itemsets

and make an optimizing based on GA-based algorithms. K-anonymity cannot provide sufficient privacy protection against

adversaries with arbitrary prior knowledge. These schemes are vulnerable to many types of privacy attacks, for example

the composition attack [20,38], foreground knowledge attack [21].

[Differential privacy] Differential privacy [2] can offer strong theoretical guarantees against attackers with arbitrary

background knowledge. For this reason, several studies start to address this issue by differential privacy. Since the high

dimensionality of long transactions, the sensitivity is very high. To reduce sensitivity, several methods are proposed. Bhaskar

et al. [22] propose two kinds of differentially private FIM schemes based on LM [2] and EM [3] by considering candidate

frequent patterns with length no greater than l. Zeng et al. [23] propose a differentially private FIM scheme, which contains

a heuristic transaction truncation method to reduce sensitivity. Li et al. [24] propose to construct a graph to find the basis

set, and then project long transactions to the basis set to reduce sensitivity. Su et al. [25] propose a method of transaction

splitting to reduce sensitivity, first they find the relationship of all items, and then split transactions based on the above

results. PriSuper [26] employs random sampling to truncate long transactions, and then uses SEM mechanism to release

top-k frequent patterns based on the maximum frequent itemsets found in advance. The above schemes cannot achieve both

high utility and efficiency. The latest work [27] presents a scheme for frequent itemset mining based on local differential

privacy.

References

1 Garofalakis M et al. Querying and mining data streams: you only get one look a tutorial. In: Proceedings of ACM

SIGMOD International Conference, Madison, 2002. 635

2 C. Dwork, F. Mcsherry, K. Nissim, Calibrating noise to sensitivity in private data analysis. In: Proceedings of Theory

of Cryptography Conference, New York, 2006. 265-284

3 F. McSherry and K. Talwar. Mechanism design via differential privacy. In: Proceedings of 48th Annual IEEE

Symposium on Foundations of Computer Science, Providence, 2007. 94-103

4 Friedman A, Schuster A et al. Data mining with differential privacy. In: Proceedings of the 16th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, Washington, 2010. 493-502

, et al. Sci China Inf Sci 8

5 Ling Chen, Ting Yu, Rada Chirkova. WaveCluster with Differential Privacy. In: Proceedings of the 24th ACM

International Conference on Information and Knowledge Management, Melbourne, 2015. 1011-1020

6 J. Vaidya et al. Privacy preserving association rule mining in vertically partitioned data. In: Proceedings of the Eighth

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, 2002. 639-644

7 Nirali R. Nanavati* and Devesh C. Jinwala. A novel privacy-preserving scheme for collaborative frequent itemset

mining across vertically partitioned data. Security and Communication Networks, 2015, 8(18):4407-4420

8 M. Kantarcioglu and C. Clifton et al. Privacy-preserving distributed mining of association rules on horizontally

partitioned data. TKDE, 2004, 16(9):1026-1037

9 W. K.Wong, D.W. Cheung et al. Security in outsourcing of association rule mining. In: Proceedings of the 33rd

International Conference on Very Large Data Bases, Austria, 2007.111-122

10 W. K.Wong, D.W. Cheung et al. An audit environment for outsourcing of frequent itemset mining. PVLDB, 2009,

2(1):1162-1172

11 A. Evfimievski, R. Srikant et al. Privacy preserving mining of association rules. In: Proceedings of the Eighth ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, Canada, 2002.217-228

12 Maurizio Atzori, F. Bonchi et al. Anonymity preserving pattern discovery. VLDBJ, 2008, 17(4):703-727

13 Xu Y, Wang K, Fu A et al. Anonymizing Transaction Databases for Publication. In: Proceedings of the 14th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, USA, 2008.767-775

14 Chih-Hua Tai,Philip S. Yu et al. k-Support Anonymity Based on Pseudo Taxonomy for Outsourcing of Frequent

Itemset Mining. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, Washington, 2010.473-482

15 Grigorios Loukides, Utility-preserving transaction data anonymization with low information loss. Expert Syst.Appl.

2012, 39(10): 9764-9777

16 Grigorios Loukides. Efficient and flexible anonymization of transaction data. Knowl.Inf.Syst. ,2013, 36(1):153-210

17 Shyue-Liang Wang. On anonymizing transactions with sensitive items. Appl. Intell. 2014, 41(4):1043-1058

18 Jerry Chun. PTA: An Efficient System for Transaction Database Anonymization. IEEE Access, 4(2016):6467-6479

19 Bechara al Bouna. Anonymizing transactional datasets. Journal of Computer Security, 2015, 23(1):89-106

20 Wong R C W, Fu A et al. Can the utility of anonymized data be used for privacy breaches. TKDD, 2011, 5(3):1-24

21 C. Dwork, A. Roth et al. The algorithmic foundations of differential privacy. Foundations and Trends in Theoretical

Computer Science, 2014, 9(3-4):211-407

22 R. Bhaskar, S. Laxman et al. Discovering frequent patterns in sensitive data. In: Proceedings of the 16th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, 2010. 503-512

23 C. Zeng, J. F. Naughton et al. On differentially private frequent itemset mining. PVLDB, 2012, 6(1):25-36

24 N. Li, W. H. Qardaji, D. Su, and J. Cao. Privbasis: Frequent itemset mining with differential privacy. PVLDB, 2012,

5(11): 1340-1351

25 Sen Su, Shengzhi Xu et al. Differentially Private Frequent Itemset Mining via Transaction Splitting. In: Proceedings

of 32nd IEEE International Conference on Data Engineering, Helsinki, 2016. 1564-1565

26 Ning Wang, Xiaokui Xiao et al. PrivSuper: a Superset-First Approach to Frequent Itemset Mining under Differential

Privacy. In: Proceedings of 33nd IEEE International Conference on Data Engineering, San Diego, 2017. 809-820

27 Tianhao Wang, Ninghui Li, Somesh Jha. Locally Differentially Private Frequent Itemset Mining. In: IEEE Symposium

on Security and Privacy, San Francisco, 2018. 127-143

28 C. Hidber, Finding Recent Frequent Itemsets Adaptively over Online Data Streams. In: Proceedings of the Ninth

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, 2003. 487-492

29 Pavlos S. Efraimidis. Weighted random sampling with a reservoir. Inf.Process.Lett., 2006, 97(5):181-185

30 Frequent itemset mining dataset repository. http:// fimi.ua.ac.be/data.

31 Kohavi, R. KDD-Cup 2000 Organizers’ Report: Peeling the Onion. SIGKDD Exploration, 2000, 2(2):86-93.

32 Zakariae El Ouazzani, Hanan El Bakkali. A new technique ensuring privacy in big data: K-anonymity without prior

value of the threshold k. Procedia Computer Science, 2018, 127:52 C 59

33 Jerry Chun-Wei Lin, Qiankun Liu et al. PTA: An Efficient System for Transaction Database Anonymization. IEEE

Access, 4(2016): 6467-6479

34 Fang Liu, Tong Li. A Clustering k-Anonymity Privacy-Preserving Method for Wearable IoT Devices. Security and

Communication Networks, 2018, 4945152:1-8.

35 Ping Li, Jin Li et al. Privacy-preserving outsourced classification in cloud computing. Cluster Computing, 2018, 21(1):

277 C 286.

36 Chun-Wei Lin, Tzung-Pei Hong. Reducing Side Effects of Hiding Sensitive Itemsets in Privacy Preserving Data Mining.

Scientific World Journal. 2014. 1-12

37 Chun-Wei Lin, Tzung-Pei Hong. The GA-based algorithms for optimizing hiding sensitive itemsets through transaction

deletion. Appl. Intell., 2015, 42(2): 210-230

38 A S M Touhidul Hasan, Qingshan Jiang. A New Approach to Privacy-Preserving Multiple Independent Data Publish-

ing. Applied Sciences, 2018, 8(5):783

