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Appendix A Methodology for Performance Characterization

This appendix describes the methodology and background for performance characterization of the selected graph frame-

works/benchmark suites.

Appendix A.1 Hardware Platform

This study is conducted on the servers of Texas Advanced Computing Center (TACC) equipped with Intel Xeon Platinum

8160 (Skylake) processors. The Skylake processor consists of 2 sockets (24 cores per socket). Each core has a 32KB L1 data

cache, a 32KB instruction cache, a 1MB L2 cache, and all cores on a socket share a 33MB L3 cache. The Skylake processor

can decode and retire up to 5 instructions per cycle, giving a theoretical maximum IPC of 5. Table S1 summarizes the

features of the experimental platform.

Table S1 The micro-architectural parameters of the Skylake processor and experimental system information

Index Description

Frequency
2.1GHz nominal

(1.4-3.7GHz depending on instruction set and number of active cores)

Cores Per Socket 24 cores (×2 sockets)

L1-icache 32KB, 64B/line, 8-way, per core

L1-dcache 32KB, 64B/line, 8-way, per core

L2 cache 1MB, 64B/line, 16-way, per core

LLC 33MB, 64B/line, 11-way, per socket

RAM 192GB (2.67GHz) DDR4

Kernel 3.10.0-693.11.6.el7.x86 64

Perf 3.10.0-693.11.6.el7.x86 64.debug

Appendix A.2 Graph Datasets

The graph inputs for our analysis are summarized in Table S2, where diameter represents the longest shortest path between

any two vertices in the graph, and degree denotes the ratio between number of edges and number of vertices. The seven

graphs we select are real world graphs from The SuiteSparse Matrix Collection and Stanford Large Network Dataset

Collection, and synthetic random graph, including the two broad categories of graphs: meshes and social networks. Flickr

(FLI) is a graph built by forming links between images which shares common metadata. LiveJournal (LJ) and Orkut (OK)

are free online social networks with small diameters. RoadCA (CA) for California and RoadTX (TX) for Texas are road

networks, where intersections and endpoints are indicated by nodes and undirected edges represent the roads connecting

these intersections or road endpoints. Cit-Patents(CIT) is a US patent citation network includes all citations granted

between 1975 and 1999. Random(SYN) is a synthetic dataset generated by Graph500 Kronocker Graph Generator which
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possesses a power-law degree distribution. It may be noted that FLI, LJ, OK, CIT and SYN are power-law distribution

graphs and CA and TX are mesh topology graphs. Compared those graphs used in distributed graph processing systems

studies, the graphs we chose are relatively small but they are big enough to stress a single node (the platform shown in

Table S1).

Table S2 Real world graph datasets used in this study

dataset #nodes #edges diameter degree type

Flickr(FLI) 0.83M 9.84M 18 11.87 Directed

LiveJournal(LJ) 4.85M 68.99M 16 14.23 Directed

Orkut(OK) 3.07M 117.19M 9 76.28 Undirected

RoadCA(CA) 1.97M 2.76M 849 2.82 Undirected

RoadTX(TX) 1.38M 1.92M 1054 2.79 Undirected

Cit-Patents(CIT) 3.78M 16.52M 22 4.38 Directed

Random(SYN) 8.39M 134.22M 19 16 Directed

Appendix A.3 Experimental Setup

Table S3 summarizes the compiler configurations of each of the graph platforms. The compiler configurations come together

with the source code or are suggested by the documents of the graph frameworks/benchmarks. As those compiler flags

suggest, all the frameworks/benchmarks enable OpenMP support, so we set the proper environmental variables (e.g.,

OMP NUM THREADS, KMP AFFINITY, GOMP CPU AFFINITY ), in order to reduce the effects from cross-socket

communication and thread migration as much as possible. For example, in the perf experiments to collect the hardware

metrics, we evenly spread 48 threads to 48 physical cores on two sockets. For the scalability study, we run each graph

application from the four selected graph platforms with thread numbers of 1, 4, 8, 24, and 48 (later referred as 1-core setup,

4-core setup, 8-core setup, 24-core setup, and 48-core/thread setup, respectively) on seven graphs. In order to evaluate the

cross-socket communication overhead, we conduct the experiments in two types of setup for 4-core, 8-core, 24-core, and

48-core/thread. One type is without the cross-socket communication overhead by assigning physical cores in one socket (for

48-thread setup, we spread 48 threads to 24 physical cores in one socket with 2 threads per core), one is with the overhead

by evenly distributing the threads to physical cores cross two sockets (those cores having even virtual core id on socket0

and odd id on socket1, while for the 1 thread scenario, it is assigned to the physical core 1 from socket 1).

Table S3 Compilation configurations for various graph frameworks/benchmarks

Graph Platform Compilation Configuration

GraphMat
mpiicpc -cxx=icpc -qopenmp -std=c++11 -L/opt/apps/intel18/boost/1.65/lib/

-I./include -I./include/GMDP -I/opt/apps/intel18/boost/1.65/include -O3 -ipo -xHost

Graph500 gcc -flto -fwhole-program -g -std=c99 -Wall -O3 -march=native -lm -lrt -fopenmp

GAP g++ -std=c++11 -O3 -Wall -fopenmp

GraphBIG g++ -std=c++0x -Wall -Wno-deprecated -O3 -DUSE OMP -fopenmp -lpfm cxx -lpfm

Appendix A.4 Performance Metrics

This subsection describes the metrics used for performance comparisons, including Data Movement Per Edge, Instructions

Per Cycle (IPC), L1 data cache MPKI, L2 MPKI, L3 MPKI, Computation Per Edge, Execution Time, and Energy

Consumption Per Edge.

• Data Movement Per Edge: It has been observed that the cost of moving data is higher than the cost of computing

operations. In the big data era, many applications are increasingly affected by the cost of data movement. In graph

computing, this issue is a prominent problem. To show the intensity of the data movement issue, we measure the number

of Data Movement Per Edge in each graph. Note that this is the count of the move operations rather the amount of data

moved. As shown in Equation A1, we record the counts of load and store instructions (denoted as #load and #store,

respectively), then divide their sum with the number of edges (denoted as #edge).

Data Movement Per Edge =
#load + #store

#edge
(A1)

• IPC: IPC shows the average number of retired instructions per cycle. It is a direct index of Instruction Level Parallelism

(ILP). The Skylake architecture issues up to five instructions per cycle, however,in practice, IPC rarely reaches the upper

bound of 5 due to various effects, such as long-latency communication with memory; floating point or Single Instruction

Multiple Data (SIMD) operations; instruction starvation in the front-end etc. IPC is an excellent metric for judging an

overall potential for application performance tuning, and micro-architecture efficiency. For multi-threaded executions, the

IPCs are calculated based on the aggregated cycles and instructions of all threads.
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• MPKI: MPKI indicates the average number of misses per kilo-instructions. MPKI is usually preferred over cache

miss rates, because MPKI also conveys information on the fraction of memory access instructions in the overall instruction

stream.

• Computation Per Edge: We use the number of Computation Per Edge to indicate the amount of computations

needed to finish the processing of a graph. The Computation Per Edge is calculated by Equation A2, where #inst denotes

the total number of instructions of the current execution and #br denotes the total number of branch instructions.

Computation Per Edge =
#inst−#load−#store−#br

#edge
(A2)

• Execution Time Per Edge: Execution time indicates the graph processing performance directly, which is recorded

using the C++ system library. For example, in each application of GraphMat, it records the start time and end time of

graph processing through system function gettimeofday().

• Energy Consumption Per Edge: Energy efficiency is an essential consideration in graph analytics, especially for

the mobile equipment. Since energy consumption is supposed to scale with the graph size, we use Energy Consumption Per

Edge instead to indicate the energy efficiency, as shown in Equation A3, where energy pkg indicates the energy consumption

(in joules) during the execution duration.

Energy Consumption Per Edge =
energy pkg

#edge
(A3)

Appendix A.5 Principal Components Analysis

As described in previous sections, various metrics are collected on four BFSs, three SSSPs, three PRs, and three TCs for

five real-world graph inputs. Many metrics may be correlated to each other. In order to remove the correlation and make

similarity analysis more meaningful, Principal Components Analysis (PCA) is leveraged to analyze the raw data. PCA is

a statistical data analysis technique. It computes new variables called principal components that are linear combinations

of the original variables, such that all principal components are uncorrelated. PCA transforms the p variables X1, X2, ...,

Xp into p principal components Z1, Z2, ..., Zp with Equation A4:

Zi =

p∑
j=1

aijXj (A4)

This transformation has the properties: (1)V ar[Z1] > V ar[Z2] > ... > V ar[Zp], which means that Z1 contains the more

information and Zp contains the least; and (2) Cov[Zi, Zj ]=0, ∀ i 6= j, which means that there is no information overlap

between the principal components. With the first property, we can remove the components with the lowest variance from

the analysis as long as the q principal components hold 90% of the total variance. PCA not only reduces the dimensionality

of the data set but also controls the data that is lost.

Appendix B Data Movement Variation

Figure S1 summarizes the metric, data movement per edge, for all the experimental cases (combinations of four applications,

seven graphs, and four frameworks). Due to the large difference in the order of the magnitude, the vertical axis is in

logarithmetic scale.
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Figure S1 Data Movement Per Edge of graph applications on different graphs. Data are collected on 48-core setup,

while BFS is the only application in Graph500 that has multi-threading implementation.
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Appendix C Tables of Collected Data

Table S4 Data Movement Per Edge of Graph Applications on Different Graphs.

BFS SSSP PageRank Triangle Counting

Graphs GraphMat Graph500 GAP GraphBIG GraphMat GAP GraphBIG GraphMat GAP GraphBIG GraphMat GAP GraphBIG

FLI 139.15 18.18 2.73 21.57 319.75 147.32 542.19 235.32 135.96 615.17 2,688.39 195.37 1,775.98

LJ 110.98 16.65 2.41 20.15 383.62 55.97 471.44 293.21 114.54 293.63 735.40 41.92 312.39

OK 61.80 13.55 0.73 51.15 243.32 27.83 364.92 156.93 52.58 333.92 1,476.12 161.67 1,640.08

CA 4,567.69 147.60 24.83 142.78 8,409.26 40,675.98 828.99 521.50 524.09 791.52 2,418.86 8.24 68.18

TX 6,181.48 199.32 29.90 228.13 10,574.72 59,618.98 858.64 551.17 537.54 792.22 2,861.46 8.06 86.00

CIT 1097.14 165.04 727.53 2006.87 3512.00 749.92 2191.74 2255.09 1052.02 2210.72 3512.00 771.96 2182.31

SYN 2309.89 9436.85 5593.27 15301.04 198.52 731.10 2020.88 1234.22 864.70 2450.67 112124.40 4412.83 66143.71

Table S5 IPC of Graph Applications on Different Graphs.

BFS SSSP PageRank Triangle Counting

Graphs GraphMat Graph500 GAP GraphBIG GraphMat GAP GraphBIG GraphMat GAP GraphBIG GraphMat GAP GraphBIG

FLI 0.44 0.58 0.31 0.04 0.86 0.02 0.08 0.68 0.36 0.05 0.96 0.99 0.67

LJ 0.57 0.54 0.25 0.04 1.26 0.03 0.09 1.24 0.35 0.07 0.73 0.82 0.30

OK 0.6 0.71 0.2 0.08 1.54 0.03 0.09 1.31 0.43 0.05 1.08 0.62 0.75

CA 1.38 0.33 0.05 0.04 0.88 0.03 0.07 1.10 0.23 0.07 0.39 0.40 0.02

TX 1.3 0.27 0.05 0.05 0.96 0.03 0.07 0.89 0.28 0.07 0.37 0.38 0.03

CIT 0.32 0.28 0.50 0.68 0.43 0.53 0.72 0.63 0.40 0.32 0.43 0.45 0.26

SYN 0.50 0.51 0.93 0.45 1.22 0.79 0.49 0.72 0.70 0.24 1.43 1.20 1.73

Table S6 L1D MPKI of Graph Applications on Different Graphs.

BFS SSSP PageRank Triangle Counting

Graphs GraphMat Graph500 GAP GraphBIG GraphMat GAP GraphBIG GraphMat GAP GraphBIG GraphMat GAP GraphBIG

FLI 10.87 33.83 15.19 116.23 21.46 19.55 147.87 18.99 104.32 91.08 3.37 5.58 10.43

LJ 12.77 29.91 35.46 132.45 22.52 24.49 130.04 23.22 94.80 97.43 8.15 8.69 16.20

OK 13.89 34.95 30.14 69.61 19.06 27.39 146.32 18.79 141.46 126.12 0.13 9.34 13.27

CA 18.44 55.63 51.56 53.76 24.22 15.16 122.03 17.82 31.09 59.13 5.14 18.69 57.69

TX 18.65 79.22 47.56 36.34 24.84 19.27 126.74 16.66 32.59 62.51 4.54 24.08 45.20

CIT 2.99 18.23 5.32 9.25 0.21 5.57 8.67 15.57 31.55 18.42 9.07 12.50 12.35

SYN 9.03 36.65 3.86 18.40 10.60 4.46 16.90 19.69 38.64 33.05 5.08 5.56 14.96

Table S7 L2 MPKI of Graph Applications on Different Graphs.

BFS SSSP PageRank Triangle Counting

Graphs GraphMat Graph500 GAP GraphBIG GraphMat GAP GraphBIG GraphMat GAP GraphBIG GraphMat GAP GraphBIG

FLI 0.84 6.49 1.91 47.08 1.76 8.42 72.79 1.25 14.58 47.86 0.14 0.48 0.92

LJ 0.98 12.67 6.43 50.25 1.80 9.95 49.49 1.09 56.15 45.27 0.87 1.72 3.01

OK 0.82 20.24 7.64 23.16 1.24 11.62 55.41 0.61 69.83 61.39 0.36 2.34 1.16

CA 1.07 1.24 7.26 21.38 3.42 7.10 53.86 1.01 8.94 39.32 0.63 6.36 14.95

TX 1.05 1.25 7.30 13.44 3.38 7.35 54.53 0.89 8.36 42.24 0.56 6.65 18.07

CIT 0.29 0.44 0.15 2.54 1.29 0.11 2.34 0.86 17.06 6.61 1.29 2.64 3.53

SYN 0.17 23.14 0.15 5.17 0.23 0.16 4.73 0.69 22.79 12.88 0.03 0.49 0.31

Table S8 Computation Per Edge of Graph Applications on Different Graphs.
BFS SSSP PageRank Triangle Counting

Graphs GraphMat Graph500 GAP GraphBIG GraphMat GAP GraphBIG GraphMat GAP GraphBIG GraphMat GAP GraphBIG

FLI 222.54 40.03 4.40 25.55 512.40 331.22 391.41 249.40 170.64 658.27 7,404.83 1,217.74 1,274.86

LJ 260.12 37.56 4.26 16.81 696.50 110.92 323.73 305.13 140.60 254.30 1,486.62 249.40 232.60

OK 120.43 31.80 1.26 45.69 415.63 49.28 230.36 160.71 57.95 259.47 4,212.12 755.10 1,126.68

CA 15768.00 346.97 42.00 184.40 21,163.55 98,523.89 740.63 580.80 809.61 967.69 2,134.86 23.83 78.66

TX 20701.32 475.85 51.80 388.38 27,873.43 138,704.65 771.28 606.82 830.77 952.81 2,516.21 23.20 94.42

CIT 998.99 187.39 572.56 2238.51 3231.17 624.77 2443.06 2352.04 1078.85 2450.20 3231.17 850.40 2423.74

SYN 4836.35 19191.86 4254.16 16091.23 551.89 644.60 2155.60 1281.25 736.73 2447.85 386240.89 24687.84 45269.04

Table S9 Energy Consumption Per Edge of Graph Applications on Different Graphs (in Joules).

BFS SSSP PageRank Triangle Counting

Graphs GraphMat Graph500 GAP GraphBIG GraphMat GAP GraphBIG GraphMat GAP GraphBIG GraphMat GAP GraphBIG

FLI 3.58E-06 2.96E-07 1.52E-08 1.74E-06 1.60E-06 4.18E-05 2.97E-05 2.96E-06 1.92E-06 2.01E-04 2.64E-05 3.80E-06 1.98E-05

LJ 1.52E-06 2.54E-07 7.52E-08 1.11E-07 1.11E-06 1.28E-05 2.47E-05 8.96E-07 1.72E-06 4.12E-05 7.44E-06 1.14E-06 8.09E-06

OK 8.04E-07 1.62E-07 1.64E-08 7.58E-07 7.43E-07 4.38E-06 1.93E-05 4.24E-07 5.41E-07 4.56E-05 1.37E-05 4.44E-06 1.89E-05

CA 3.44E-05 7.26E-06 1.25E-06 1.59E-05 1.53E-06 1.07E-02 2.92E-05 6.43E-06 1.32E-05 5.36E-05 3.86E-05 4.17E-07 1.15E-05

TX 4.73E-05 1.13E-05 2.15E-06 1.96E-05 1.18E-06 1.31E-02 2.68E-05 7.46E-06 1.21E-05 5.37E-05 4.54E-05 3.50E-07 6.36E-06

CIT 5.07E-05 4.91E-06 1.68E-05 1.96E-04 4.66E-06 1.73E-05 2.03E-04 1.62E-05 1.23E-04 2.44E-03 5.13E-05 2.12E-05 2.33E-04

SYN 5.21E-05 1.62E-04 1.16E-04 2.50E-03 2.61E-06 1.52E-05 3.00E-04 7.35E-06 1.77E-05 4.52E-04 8.64E-04 8.60E-05 7.28E-04
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Appendix D Kiviat Diagrams
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Figure S2 Kiviat diagrams of graph applications with different graphs. Data are collected on 48-core setup. BFS is the

only application that has OpenMP implementation in Graph500.
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Appendix E Scalability

1E+0

1E+1

1E+2

1E+3

1E+4

1 4 16 64

N
or

m
al

iz
ed

 E
xc

ut
io

n 
Ti

m
e

# Thread

GraphMat GAP
GraphBIG Graph500

(1) BFS FLI

1E+0

1E+1

1E+2

1E+3

1 4 16 64

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e

# Thread

GraphMat
GAP
GraphBIG

(2) SSSP FLI

1E+0

1E+1

1E+2

1E+3

1 4 16 64

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e

# Thread

GraphMat

GAP

GraphBIG

(3) PR FLI

1E+0

1E+1

1E+2

1E+3

1 4 16 64

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e

# Thread

GraphMat
GAP
GraphBIG

(4) TC FLI

1E+0

1E+1

1E+2

1E+3

1E+4

1 4 16 64

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e

# Thread

GraphMat GAP
GraphBIG Graph500

(5) BFS LJ

1E+0

1E+1

1E+2

1E+3

1 4 16 64

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e

# Thread

GraphMat
GAP
GraphBIG

(6) SSSP LJ

1E+0

1E+1

1E+2

1E+3

1 4 16 64

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e

# Thread

GraphMat
GAP
GraphBIG

(7) PR LJ

1E+0

1E+1

1E+2

1E+3

1 4 16 64

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e

# Thread

GraphMat
GAP
GraphBIG

(8) TC LJ

1E+0

1E+1

1E+2

1E+3

1E+4

1 4 16 64

N
or

m
al

iz
ed

 E
xc

ut
io

n 
Ti

m
e

# Thread

GraphMat
GAP
GraphBIG
Graph500

(9) BFS OK

1E+0

1E+1

1E+2

1E+3

1 4 16 64

N
or

m
al

iz
ed

 E
xc

ut
io

n 
Ti

m
e

# Thread

GraphMat
GAP
GraphBIG

(10) SSSP OK

1E+0

1E+1

1E+2

1E+3

1E+4

1 4 16 64

N
or

m
al

iz
ed

 E
xc

ut
io

n 
Ti

m
e

# Thread

GraphMat
GAP
GraphBIG

(11) PR OK

1E+0

1E+1

1E+2

1 4 16 64

N
or

m
al

iz
ed

 E
xc

ut
io

n 
Ti

m
e

# Thread

GraphMat
GAP
GraphBIG

(12) TC OK

1E+0

1E+1

1E+2

1E+3

1 4 16 64

N
or

m
al

iz
ed

 E
xc

ut
io

n 
Ti

m
e

# Thread

GraphMat GAP

GraphBIG Graph500

(13) BFS CA

1E+0

1E+1

1E+2

1E+3

1E+4

1 4 16 64

N
or

m
al

iz
ed

 E
xc

ut
io

n 
Ti

m
e

# Thread

GraphMat
GAP
GraphBIG

(14) SSSP CA

1E+0

1E+1

1E+2

1E+3

1 4 16 64

N
or

m
al

iz
ed

 E
xc

ut
io

n 
Ti

m
e

# Thread

GraphMat
GAP
GraphBIG

(15) PR CA

1E+0

1E+1

1E+2

1E+3

1 4 16 64
N

or
m

al
iz

ed
 E

xc
ut

io
n 

Ti
m

e

# Thread

GraphMat
GAP
GraphBIG

(16) TC CA

1E+0

1E+1

1E+2

1E+3

1 4 16 64

N
or

m
al

iz
ed

 E
xc

ut
io

n 
Ti

m
e

# Thread

GraphMat

GAP

GraphBIG

Graph500

(17) BFS TX

1E+0

1E+1

1E+2

1E+3

1 4 16 64

N
or

m
al

iz
ed

 E
xc

ut
io

n 
Ti

m
e

# Thread

GraphMat
GAP
GraphBIG

(18) SSSP TX

1E+0

1E+1

1E+2

1E+3

1 4 16 64

N
or

m
al

iz
ed

 E
xc

ut
io

n 
Ti

m
e

# Thread

GraphMat
GAP
GraphBIG

(19) PR TX

1E+0

1E+1

1E+2

1E+3

1 4 16 64

N
or

m
al

iz
ed

 E
xc

ut
io

n 
Ti

m
e

# Thread

GraphMat
GAP
GraphBIG

(20) TC TX

1E+0

1E+1

1E+2

1E+3

1E+4

1 4 16 64

N
or

m
al

iz
ed

 E
xc

ut
io

n 
Ti

m
e

# Thread

GraphMat GAP
GraphBIG Graph500

(21) BFS CIT

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1 4 16 64

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e

# Thread

GraphMat
GAP
GraphBIG

(22) SSSP CIT

1E+0

1E+1

1E+2

1E+3

1 4 16 64

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e

# Thread

GraphMat
GAP
GraphBIG

(23) PR CIT

1E+0

1E+1

1E+2

1E+3

1 4 16 64

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e

# Thread

GraphMat
GAP
GraphBIG

(24) TC CIT

1E+0

1E+1

1E+2

1E+3

1E+4

1 4 16 64

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e

# Thread

GraphMat GAP
GraphBIG Graph500

(25) BFS SYN

1E+0

1E+1

1E+2

1 4 16 64

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e

# Thread

GraphMat
GAP
GraphBIG

(26) SSSP SYN

1E+0

1E+1

1E+2

1E+3

1 4 16 64

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e

# Thread

GraphMat
GAP
GraphBIG

(27) PR SYN

1E+0

1E+1

1E+2

1E+3

1 4 16 64

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e

# Thread

GraphMat
GAP
GraphBIG

(28) TC SYN

Figure S3 Performance comparison and scalability of graph applications with different graphs. BFS is the only application

that has OpenMP implementation in Graph500. Normalized with respect to lowest execution time in each chart.
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Appendix F Correlation Analysis

Based on the abundant experimental data collected (91 data points per metric), we also perform a thorough correlation

analysis, and the results are reported in Table S10. The range for possible correlation coefficients is from -1 to 1, where

1 means two metrics are ”perfectly correlated” on every data point (self-correlation for example), while -1 indicates an

opposite trend. The top half of Table S10 presents correlation against counts of various events (labeled value), and the

bottom half presents correlation against events per edge or per instruction (labeled ratio). As we can see, in the value section,

the total number of L1 Data cache misses, data movement, and number of computations show the strongest correlation.

In the ratio section, Data Movement Per Edge and Compuations Per Edge demonstrates a nearly perfect correlation to

both performance and energy. CPI is correlated to performance or energy to some extent, however, all the MPKIs seem

to be nearly useless in indicating either performance or energy (correlation coefficients are around zeros). Actually, cache

techniques have progressed so much in the past several decades that caches perform very well for almost all of the graph

applications, as we observe low cache MPKIs in many cases (in about two-thirds of cases L1D MPKI640, L2 MPKI610,

L3 MPKI62). The analysis also imply that graph analytics applications would benefit from hardware techniques which

target on reducing data movement, for example, computing in situ and in memory.

Table S10 Correlation of Performance and Energy to Various Metrics

Metrics Correlation to Performance Correlation to Energy

V
a
lu

e
(t

o
ta

l
co

u
n
t)

Wall clock time 1.000 0.166

# L1D Miss 0.674 0.659

# L2 Miss 0.614 0.609

# L3 Miss 0.256 0.247

# Branch Prediction Miss 0.125 0.107

Data movement 0.548 0.834

Computation 0.578 0.708

Energy consumption 0.998 1.000

R
a
ti

o
(p

er
ed

g
e/

in
st

ru
ct

io
n

)

Execution Time Per Edge 1.000 0.977

CPI 0.333 0.332

L1D MPKI -0.103 -0.106

L2 MPKI -0.066 -0.069

L3 MPKI -0.082 -0.085

Branch Prediction MPKI -0.127 -0.127

Speculation Ratio -0.128 -0.128

Data Movement Per Edge 0.975 0.974

Computation Per Edge 0.968 0.967

Energy Consumption Per Edge 0.977 1.000

Appendix G Benchmark Options

Based on the analysis done in the previous three sections, this section explores the workload space and offers some suggestions

on choosing graph workloads as benchmarks.

We utilize Principal Component Analysis (PCA) to reduce the dimensions, and Figure S4 presents the distribution of

the workloads in a 2D space of the two most dominant principal components covering more than 80% of the variance.

Comparing the frameworks (indicated in different colors), GraphMat is the one that has it workloads most closely clustered

together around the left bottom corner. GAP has two workloads (i.e., SSSP on CA and TX) extending the space on the

dimension of PC2 dramatically. In contrast, GraphBIG has a very small span on PC2, but spreads its data points along PC1

from -0.38 (TC on OK) to 1.28 (SSSP on FLI). If categorized application by application (distinguished by marker types),

SSSP is the one worth attention, because SSSP has the most diversity and two SSSP implementations are the outliers of

the space. On the other hand, the workloads of TC gather more tightly than the workloads of other three applications.

Table S11 exhibits lists of graph workloads for several architectural evaluations. New cache designs may show their

improvement on GraphBIG SSSP, since there are high cache MPKIs; The matrix structure and the low diversity across

applications and graphs make GraphMat a good candidate for accelerators; Architects could justify the idea of PIM with

GAP SSSP on some mesh graphs, because those are the test cases having a lot of data movement; Similarly, GAP SSSP on

the mesh graphs could be used as the litmus test for multi-core processor designs where communication overhead is a big

concern; To evaluate heterogeneous memory systems, diverse data access patterns are necessary, while OK and TX can be

selected as the representatives for power-law graphs and mesh graphs, both of which should be covered.

As a suggestion in general, architects or computing system designers should pay attention to different implementations,

trying several graph applications on both power-law graphs (social network for instance) and mesh graphs (such as road

networks).
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OK GraphMat SSSP

TX GAP SSSP

CA GAP SSSP

FLI GraphBIG SSSP

Figure S4 Graph workloads in the Principal Component space. Principal Component 1 (PC1) together with Principal

Component 2 (PC2) achieve fairly high coverage of the information from the eight aforementioned metrics (i.e., Data

Movement Per Edge, Instructions Per Cycle (IPC), L1 data cache MPKI, L2 MPKI, L3 MPKI, Computation Per Edge,

Execution Time Per Edge, and Energy Consumption Per Edge). PC1 is dominated by MPKIs of three levels of cache (the

higher the value is, the higher cache MPKIs are), while PC2 groups mainly the Data Movement Per Edge, Computation Per

Edge, Execution Time Per Edge, and Energy Consumption Per Edge (the value increases as the amount of data movement,

computation increase).

Table S11 Suggested Graph Workloads with the Desired Features

Purpose Feature Graph Workloads

Cache Evaluation Challenging Cache GraphBIG SSSP

Accelerator Design Regularity and Scalability GraphMat

Processing in Memory Plenty of data movement GAP SSSP on CA/TX

Multicore Processor or Network-on-Chip Sensitivity to On-chip Communication GAP SSSP on CA/TX

Heterogeneous Memory System Diverse Data Access Pattern Power-law and mesh graphs
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