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Appendix A  Proof of Lemma 1:
According to the total probability theorem and the fact that||h, ||? and |Eghl~|2 are independent, the ||}, ||? can be
expressed as:
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Where (a) holds for the total probability theorem. Such we have the CDF of |2 h;|? in (5), and ||}, ||? ~ Gamma(N;, 1).
Due to piecewise function in(5), we forms the integral in (A1) into:
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Where (b) comes from the definition of the CDF of gamma, distribution. And F, (Nj, ) represents the CDF of Gamma
Ni—1 .
distribution with parameter N;, which is given by F(N;,z) =1~ 5 #—%—. We noted that the property of 2 and B;
m=0 ’

can be analyzed easier under fixed N; because of the characteristic of Gamma distribution.

Appendix B Proof of Lemma 2:

We bring the CDF of ||k}, ||? into (10), and the expression contains the power of three added random variables, which is
hard to solve. First, we pull back the influence of estimation error into Ierraverage = P Xiu|™ ata and get the lower
bound of coverage probability[36]. We find that the formula contains power of two added random variables. Therefore, (12)
transforms into:
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Which 07 = 02+P;| X0 |7 . The process (a) is obtained by[38] with p-order derivative of Laplace transform of Lr, (s)

. The Laplace transform is glven by:
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Which w(P;) = [ e~ Kpr™ " ¢ P, |11, |2 (P)dD With Pj||hyj||* ~ Gamma(Nj, P;). And (b) is obtained by the definition
of Laplace transform, and (c) is using the Probability Generating functional (PGFL) of Stochastic Geometric theory,
expressed as:
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Applying [28, 3.191 ], w(P;) can simplified into:
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And using [28, 3.194], the Laplace transform is calculated as:
Lr,(s) = Br, [e=*"] = T] £1,,(5) (B5)
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So, the Laplace transform is obtained by (B2) and (B4), usingsimplified as (15). with the help of the[21], we can further
obtain the expression of p-order Laplace transform as:
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Appendix C proof of lemma3
As (18) is obtained, using the PGFL over PPP in (a) and the Jensen inequality in (b), the upper bound is satisfied:
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Similarly, we can further get the expression of L , as:
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As for the lower bound described above, we can show the expression with the help of P(|hHh 1?2 < %)

calculated above:
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