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Appendix A Proof of Lemma 1:

According to the total probability theorem and the fact that||ĥio||2 and |ĥH
iuhl̂|

2 are independent, the ||h∗
io||2 can be

expressed as:
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Where (a) holds for the total probability theorem. Such we have the CDF of |ĥH
iuhl̂

|2 in (5), and ||ĥio||2 ∼ Gamma(Ni, 1).

Due to piecewise function in(5), we forms the integral in (A1) into:

P(||hH
iu||2|ĥH
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Where (b) comes from the definition of the CDF of gamma distribution. And Fγ(Ni, x) represents the CDF of Gamma

distribution with parameter Ni, which is given by Fγ(Ni, x) = 1 −
Ni−1∑
m=0

xme−x

m!
. We noted that the property of x and Bi

can be analyzed easier under fixed Ni because of the characteristic of Gamma distribution.

Appendix B Proof of Lemma 2:

We bring the CDF of ||h∗
io||2 into (10), and the expression contains the power of three added random variables, which is

hard to solve. First, we pull back the influence of estimation error into Ierr,average = Pi|Xiu|−αiσ2
m and get the lower

bound of coverage probability[36]. We find that the formula contains power of two added random variables. Therefore, (12)

transforms into:
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Which σ2
1 = σ2

u+Pi|Xiu|−αiσ2
m . The process (a) is obtained by[38] with p-order derivative of Laplace transform of LIo (s)

. The Laplace transform is given by:
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Which ϖ(Pj) =
∫∞
0 e−Kpr

−αj
fPj ||huj ||2 (p)dp with Pj ||huj ||2 ∼ Gamma(Nj , Pj). And (b) is obtained by the definition

of Laplace transform, and (c) is using the Probability Generating functional (PGFL) of Stochastic Geometric theory,

expressed as:
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Applying [28, 3.191 ], ϖ(Pj) can simplified into:
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And using [28, 3.194], the Laplace transform is calculated as:
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So, the Laplace transform is obtained by (B2) and (B4), usingsimplified as (15). with the help of the[21], we can further

obtain the expression of p-order Laplace transform as:
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Appendix C proof of lemma3

As (18) is obtained, using the PGFL over PPP in (a) and the Jensen inequality in (b), the upper bound is satisfied:
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Similarly, we can further get the expression of LIei as:
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As for the lower bound described above, we can show the expression with the help of P (|ĥH
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pis 6
∫∞
0 P (log2(1 + SNRe) > Re)fe(r)dr

=
∫∞
0 2πλ exp(− (2Re−1)σ2

e

Pi|r|−αi
− π

K∑
j=1

λj1/αj(k2Pj)
2/αj

Nj∑
k=1

B(1− 2/αj , k + 2/αj − 1))− πλer2)dr
(C3)


