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Appendix A Methodology

Appendix A.1 Related work

Fingerprint classification is still a difficult task due to the high intra-class variability, low inter-class variability and the

presence of complex noise. The development of fingerprint classification techniques is also the way to overcome more

realistic and complex noise. Fingerprint classification algorithms usually contain two modules: feature extraction and

classifier design.

Features used in classification can be categorized as the ridge line flow, orientation field, singular points, and Gabor

filter responses. The ridge line flow is traced according to the orientation field and represents the global ridge flow [1].

The orientation field is the most important feature of a fingerprint which describes the overall ridge orientation. Since

the orientation field contains sufficient information for classification, most fingerprint classification techniques are based on

the orientation field [2–4]. Singular points contain core and delta points in an orientation field, which is usually used to

determine fingerprint classes according to some human designed rules [5–7]. Some authors proposed specific enhancement

algorithms to strengthen the enhanced value in singular points [8].

The orientation field and singular points are the most widely used features for fingerprint classification, and they both

have shortages. Many researchers attempt to combine these features to boost the classification performance. Two neural

networks are designed based on the orientation field and singular points respectively in [9]. A third network is then used to

combine the results. Zhang et al. [6] exploit singular points and pseudoridge tracing based on the orientation field to get

robust results. The coefficients of the orientation field and singularity features are combined as input to an SVM classifier

in [7].

Classifiers used in fingerprint classification can be categorized as hand-crafted rules and learning based methods. Hand-

crafted rules contain rule-based [6, 10], syntactic [11], structural [12] methods. These methods usually design some rules

based on singular points and orientation fields. Such as the location and number of singular points and the orientation of the

core point. Learning based methods contain statistical [13], SVM [7], neural network [14] and multiple classifiers [1,5,8,15].

These methods take orientation, singular points and enhancement as input and learn features from data. Since there may

be ambiguity to categorize some fingerprints into specific classes, some authors exploit fuzzy classification techniques to

represent the fingerprint class as a probability value [4].

Recently, considering the great success of deep convolutional networks on natural images [16–21], plenty of deep learning

based methods are proposed to classify fingerprints end-to-end. Stacked autoencoder is used to obtain the reconstruction of

fingerprints and softmax regression is used for classification in [4]. However, the performance is limited due to the shallow

network. The block average of the orientation field and segmentation are put into a 6 layer convolutional network for

fingerprint classification in [22]. The orientation field is estimated by a gradient based method which limits the performance

on low quality fingerprints. VGG network [17] which is trained on natural images is directly used to classify fingerprint

images with fine tuning in [23]. AlexNet [16] and a shallow version are used in [24]. However, the VGG network and

AlexNet are time-consuming and occupy large memories. Besides, these networks are usually regarded as black boxes which

are difficult to further analyze and optimize.

There is rarely published work on latent fingerprint classification. We believe that one of the main reasons is that the

presence of complex noise makes it hard to accurately recognize the fingerprint class, let alone to consider the algorithm’s

time complexity. Besides, some incomplete latent fingerprints do not contain sufficient information to determine the class.

Khan et al. [25] classify fingerprints through 3 steps: enhancement, segmentation and classification. The first two steps

use classic methods, including gradient based orientation field estimation and Gabor enhancement. The last step uses a
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Figure A1 The architecture of UNet used in orientation field estimation, segmentation and singular points extraction.

The number below the feature map denotes the number of channels.

convolutional network for classification. However, the gradient based orientation field estimation and segmentation are

sensitive to noise and the enhancement will also be affected. In this paper, we attempt to classify fingerprints robustly and

quickly by integrating the deep network and domain knowledge.

Appendix A.2 Orientation field and segmentation

Based on the backbone network, the design and training of orientation field estimation are described in the following

subsections.

Appendix A.2.1 Network architecture

Based on the backbone network, two UNets [26] are used to produce the orientation field and segmentation from OF and

QF. The architecture of UNet is illustrated in Figure A1, which explicitly integrates multi-scale information to acquire

robust results. The UNet adopt encode and decode layers just like a fully convolutional network. Moreover, a shortcut is

connected from the encode layer to decode layer to combine high-level semantics and low-level fine-grained information.

Appendix A.2.2 Orientation representation

There are two points to consider in the orientation representation of fingerprints: the periodicity of orientation and the

equivalence of 0 and 180 degrees. The commonly used fingerprint orientation representation method is to represent an

orientation value θ as (cos(2θ), sin(2θ)). In this paper, we represent the orientation value in the form of a probability

vector. Compared with the sine-cosine representation, the probability vector contains more information (probability of each

orientation). Specifically, we discretize the 180 degrees ranged orientation field to 90-dimensional vectors, and the value of

the vector indicates the probability of the orientation. So each orientation value is expressed as p = {p(i)}N−1
i=0 , where p(i)

denotes the probability of the orientation to be 2∗ i. To get the precise orientation value, the weighted average response [27]

can be used as,

θave(x, y) =
1

2
atan2(d̄sin2(x, y), d̄cos2(x, y)), (A1)

where d̄−2(x, y) denotes the weighted sum of sine and cosine of the double angle, which is usually used to calculate the

mean angle against the periodicity of the orientation. It is defined as,

d̄cos2(x, y) =
1

N

∑
N

p(i) · cos(2 ∗ 2 ∗ i), (A2)

d̄sin2(x, y) =
1

N

∑
N

p(i) · sin(2 ∗ 2 ∗ i), . (A3)

Appendix A.2.3 Label and loss function

Since there are no manually marked labels of orientation field or segmentation, and manual labeling is time-consuming and

labor-intensive, we use weakly supervised learning to train fingerprint backbone network. Considering that most data sets

have manually marked minutiae points and matching relationships between latent and tenprint fingerprints, we generate

the orientation field labels from corresponding tenprint fingerprints according to the matching relationship.

Orientation labels The orientation labels consists of global and local orientation labels. The global orientation labels

are orientation fields for fingerprints. These labels are generated from matched and aligned tenprint fingerprints through

the following 3 steps:

(1) Matching the paired tenprint and latent fingerprints by a minutiae-based matching algorithm and generating the

matched minutiae pairs.

(2) Aligning the paired fingerprints according to the matched minutiae pairs.
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Figure A2 Orientation labels. Red lines denote global orientation labels and yellow lines denote local orientation labels.

(3) Calculating the orientation field on tenprint fingerprints by FingerNet [28] and used as both tenprint and latent

fingerprints’ global orientation labels.

Because of the existence of non-linear deformation, the global orientation field is not absolutely accurate. Since the

minutiae orientation is manually marked, we define local orientation labels from minutiae. The orientation of minutiae and

orientation fields have different ranges, such as 360 degrees and 180 degrees. The local orientation label from minutiae

orientation is defined as pori = mod(pmnt, π). Figure A2 shows the orientation labels.

Segmentation labels The segmentation labels are generated by using the manually marked minutiae points. We

use dilated and Gaussian smoothed convex hulls of the minutiae points as the weak segmentation labels of fingerprints.

Loss functions For orientation labels, the weighted cross entropy loss is used as,

Lori = −
1

|ROI|
∑
ROI

(βyilog(pi) + (1− β)(1− yi)log(1− pi)), (A4)

where β is used to balance the positive and negative weights, yi is the ground truth value and pi is the predicted value.

|ROI| is the foreground region which represents segmentation area and minutiae centred area in global and local orientation

labels respectively.

Orientation coherence [27] reveals the characteristic of fingerprint orientation as a consistent field, which is an important

regularization term. It is defined as,

d̄ = [d̄cos2(x, y), d̄sin2(x, y)],

||d̄||2 =
√

(d̄cos2(x, y))2 + (d̄sin2(x, y))2,

Coh =
||
∑

3∗3(d̄)||2∑
3∗3(||d̄||2)

, (A5)

where
∑

3∗3 denotes the sum in a 3*3 neighborhood, and || · ||2 denotes the two-norm of a vector. The closer the Coh is to

1, the more consistent the orientation field.

For the segmentation loss function, we use intersection over union (IoU) loss function which is more consistent with

the segmentation target. IoU is usually used to measure the overlap between the predicted region and the target region.

It is defined as the intersection of two regions divided by the union of them. Here we use IoU loss function to constrain

segmentation. The IoU loss function is defined as follows:

LIoU =

∑N
i=1 y(i) ∗ p(i)∑N

i=1 y(i) +
∑N

i=1 p(i)−
∑N

i=1 y(i) ∗ p(i)
, (A6)

where yi is the ground truth value and pi is the predicted value.

Since the backbone network is constrained directly by the orientation field and segmentation, these features can be

acquired through a simple network inference. Moreover, a simple convolutional layer with given weights is designed to

smooth the orientation output. For the segmentation, we make a simple fixed threshold segmentation and add morphological

open and close operations to remove burrs and fill holes.

Appendix A.3 Hybrid classification

To make full use of the orientation field, two branches of classification methods are designed.

Appendix A.3.1 OF based classification

Since the orientation field (OF) contains sufficient information for fingerprint classification, we take the orientation field

and segmentation as input to generate a 4-dimensional feature vector, which represents the probability of the fingerprint

being Arch, Left Loop, Right Loop and Whorl. To better deal with fingerprints of different input sizes, fully convolutional



Tang Y, et al. Sci China Inf Sci 4

network [19] and global average pooling [29] are used. These techniques enable the network to receive fingerprints of any

size, such as 512× 512 and 800× 768.

The class labels of fingerprints are used to supervise the network. To better supervise the features, softmax and center

loss [30] are used to constrain the inter and intra classes. The loss function is defined as,

L = LSoftmax + λLCenter (A7)

LSoftmax = −
m∑
i=1

log
e
WT

yi
xi+byi∑n

j=1 e
WT

j xi+bj
, (A8)

LCenter =
1

2

m∑
i=1

‖xi − cyi‖
2, (A9)

where xi denotes the ith output of the last layer, and yi is the ground truth class. W and b are the weights and bias term.

cyi is the class center of yi. Following the advice of [30], the class center is updated in a mini-batch.

Noticing that some latent fingerprints are too small to contain sufficient information to determine the class, we remove

these samples during training.

Appendix A.3.2 SP based classification

Singular points (SPs) are the most intuitive and important feature for fingerprint classification. Based on the number and

location of singular points, we can easily classify fingerprints through some rules [10].

To get robust singular points, a UNet is designed for end-to-end singular points extraction. Inspired by the minutiae

representation in FingerNet [28], singular points are represented by 3 feature maps. The feature maps represent the

probability of each location to be assigned as core, delta and background. The network architecture is illustrated in

Figure A1.

The singular point extraction problem is posed as a pixel-wise classification task. Each point is assigned to be the core,

delta or background point. The loss function is defined as,

Lsp = −
1

|ROI|
∑
ROI

(βyilog(pi)), (A10)

where β is the class weights, yi is the ground truth class and pi is the predicted class. |ROI| is the foreground region.

After singular points extraction, fingerprint classification is performed by the SPs based rules [6].

Appendix A.3.3 Hybrid classification

A 4-dimensional probability vector is acquired from OF based method and singular points are acquired from the SP based

method. As shown in Algorithm A1, a fusion algorithm is designed to integrate the two methods complementarily.

Algorithm A1 Fusion algorithm for hybrid fingerprint classification

Input: P : Probability vector, S: Singular points, R: Rules.

Output: C: Class.

1: if max(P ) > 0.7 then

2: C = argmax P

3: else

4: if R(S) is not reject then

5: C = R(S)

6: end if

7: end if

8: Return C

Appendix B Experiments

Our proposed FClassNet is evaluated on different quality databases in terms of orientation field estimation and fingerprint

classification.

Appendix B.1 Databases

Training set We establish an in-house fingerprint database for training. It contains about 8000 latent fingerprints

and their corresponding tenprint fingerprints. Each fingerprint contains manually marked minutiae, singular points and

classes. The tenprint fingerprints are 640×640 pixels in size. The latent fingerprints are 512×512 pixels in size. Since fully

convolutional network [19] and global average pooling [29] are used in the network, fingerprints with different sizes can be

processed well.
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Table B1 Orientation estimation performance compared with other algorithms in terms of Root Mean Square Deviation

in degrees.

Algorithm All Good Bad Ugly

Proposed 11.78 9.57 12.50 13.34

FingerNet [28] 13.13 10.98 14.19 14.47

ConvNet [34] 13.51 10.76 13.94 16.00

LocalDict [35] 13.76 10.87 14.12 16.40

GlobalDict [33] 18.44 14.40 19.18 21.88

FOMFE [36] 28.12 22.83 29.09 32.63

STFT [37] 32.51 27.27 34.10 36.36

Figure B1 The segmented orientation estimation results on several hard cases of NIST SD27. The first row denotes

FingerNet’s orientation estimation results and the second row denotes FClassNet’s orientation estimation results.

Test set We evaluate the proposed method on the public tenprint database NIST 4 [31], public latent fingerprint database

NIST SD27 [32] and our in-house latent fingerprint database CISL1000. NIST 4 contains 4000 tenprint fingerprints which is

512× 512 pixels in size. NIST SD27 contains 258 latent fingerprints of different quality. Each latent fingerprint is 800× 768

pixels in size and assigned to be good, bad and ugly quality. CISL1000 contains 1000 latent fingerprints which is 512× 512

pixels in size. All the fingerprints we used are 500 pixels per inch.

Appendix B.2 Orientation estimation and segmentation

The Root Mean Square Deviation (RMSD) is used as a statistical indicator to evaluate the orientation estimation per-

formance with manually marked orientation field [33]. Table B1 compared the orientation estimation results with other

algorithms on NIST SD27 in terms of RMSD. It can be seen that our method outperforms other methods. It takes about

40ms to extract orientation fields and segmentation on a 768× 800 fingerprint.

For the evaluation of orientation field estimation, on the one hand, we look at the statistical RMSD which reflects the

overall performance of the algorithm. On the other hand, we also look at its performance on some hard cases to evaluate

whether it has learned the pattern of the fingerprint orientation. Figure B1 shows the performance of the orientation

estimation and segmentation module in some hard cases. It can be seen that the proposed orientation field estimation

and segmentation algorithm performs better in some hard cases and really learns the directional texture information of

fingerprints.

Appendix B.3 Fingerprint classification

Table B2 compares the fingerprint classification results with other algorithms on NIST 4 database [31], which is usually

used to verify the classification results because of its uniform category distribution. The rejection rate is used to assign

some low quality fingerprints into the “unknown” class. With the rejection of low quality fingerprints, the accuracy will

increase a lot. The “whole DB” denotes that all the fingerprints are used for testing, while the ’half DB’ denotes half of

the fingerprints are used to fine-tuning the model and the remaining fingerprints are used for testing. “FClassNet” denotes

our proposed method. “FClassNet-RE” rejects some ambiguous fingerprints whose confidence is smaller than 0.8, which

a practical strategy to dealing with incomplete and ambiguous fingerprints. “FClassNet-OF” denotes the orientation field

based classification results. “FClassNet-SP” denotes the singular points based classification results. “Gori+SP” denotes the

gradient based orientation field estimation methods and singular points based classification. It can be seen that our proposed
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Table B2 Fingerprint classification performance compared with other algorithms.

Algorithm Test set Accuracy Rejection rate

FClassNet whole DB 95.1% 0%

FClassNet-RE whole DB 96.5% 5.1%

FClassNet-OF whole DB 94.6% 0%

FClassNet-SP whole DB 93.9% 4.5%

Gori+SP whole DB 83.9% 6.9%

Shrein et al. [22] half DB 94.5% 0%

Wang et al. [4] half DB 91.4% 0%

Liu et al. [38] whole DB 92.1% 0%

Zhang et al. [6] whole DB 95.3% 11.8%

Yao et al. [39] half DB 93.1% 1.8%

Jain et al. [40] whole DB 91.2% 0%

Candela et al. [1] half DB 88.6% 0%

(a) A→A (b) L→L (c) R→R (d) W→W

(e) A→A (f) L→L (g) R→R (h) W→W

(i) L→A (j) A→R (k) L→A (l) W→L

Figure B2 The classification results on several samples. The caption “X→Y” denotes the true class is X and the predicted

class is Y. The first row illustrates tenprint fingerprints’ results and the second row illustrates latent fingerprints’ results.

The third row illustrates some misclassified cases. Our predicted orientation field and segmentation are drawn on the image.

FClassNet outperforms other methods, and its internal modules also perform better than other algorithms. Table B3 shows

the confusion matrix to give a more detailed classification result.

In practical application, the fingerprint classification needs a very high recall rate, that is, the truly matched fingerprint

cannot be filtered out. Benefiting from that our output is a category probability vector rather than an exact category, we

can combine the sub-class technique to filter fingerprints. The category with the second highest probability is defined as

the sub-class. If the predicted class and sub-class contain the real class, the prediction is correct. In this case, we achieve

99.8% top-2 accuracy.

We also evaluate the classification performance on latent fingerprints. Table B4 shows the classification results on two

latent databases. NIST SD27 get lower accuracy because it contains many extremely small area fingerprints. Figure B2
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Table B3 The confusion matrix of classification results on NIST 4 database.

True class
Predicted class

A/T L R W

A/T 1493 39 68 0

L 43 757 0 0

R 36 4 756 4

W 1 7 4 788

Table B4 Fingerprint classification performance on two latent databases.

Database Total Accuracy TOP-2 accuracy

NIST SD27 [32] 258 79.8% 93.7%

CISL1000 1000 84.3% 95.9%
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Figure B3 The candidates filtering curves on (a) NIST 4 database and (b) NIST SD27 database. Retaining shorter

candidate lists with higher accuracy is considered a better algorithm.

visualize some classification results. It can be seen that: (1) High quality fingerprints can be classified correctly. (2) Low

quality fingerprints with sufficient area can be classified correctly. Our orientation field estimation module can compute

accurate orientation field on low quality fingerprints and make it easier to classify latent fingerprints. (3) Misclassification

occurs on small area fingerprints and ambiguous category fingerprints. It takes about 50ms for classification on a 768× 800

fingerprint.

Appendix B.4 Candidates filtering

Since we acquire the probability vector from the last layer of FClassNet-OF, a novel indexing method based on the probability

vector is proposed without rising more costs. The Jensen-Shannon divergence is used to measure the similarity between

query’s probability vector and the probability vector of fingerprints in the candidate list. The template in the gallery whose

similarity between the query is bigger than a certain threshold will be filtered.

Figure B3 compares three methods of candidates filtering on NIST 4 database and NIST SD27 database: (1) The

candidate list which has the same class with the query fingerprint. (2) The Jensen-Shannon divergence between the query’s

probability vector and probability vector of fingerprints in the candidate list is smaller than a certain threshold. (3) The

candidate list whose top-2 classes are overlapped with the query fingerprint. From the candidate filtering results, we can

see that (1) The probability vector gives flexible choices to balance the accuracy and candidate length. (2) On tenprint

fingerprints, the probability vector performs better than fingerprint classes and about equal to top-2 classes. (3) On latent

fingerprints, high accuracy is also acquired when filtering about half of the gallery list.
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