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Appendix A Randomly nanocracks induced in continuous MnPt film

To induce nanocracks in MnPt film, the MnPt films was first integrated on a double-polished PMN-PT substrate. Then, nanoscale
silver paste was coated on the backside of PMN-PT substrate to be used as the bottom electrode. The device geometric structure
and electrical measurement are schematically demonstrated in Figure Al(a). An out-of-plane triangular cyclic voltage V ¢ with an
amplitude of 100 V and a period of 80 s was applied between the top MnPt film and the bottom Ag electrode. When V¢ reverse
swept from +100 V to -100 V, irregular cracks randomly distributed in the MnPt film can be observed under an optical microscope,
as shown in Figure A1(b).
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Figure A1 Randomly and irregularly distributed cracks in MnPt film under an out-of-plane voltage. (a) The device geometric
structure and the schematic of the electrical measurement setup. (b) The local optical microscope image of the irregular cracks
randomly distributed in the MnPt film. The SEM images of an (c) open-state and (d) closed-state of cracks in the MnPt film after
sweeping the V¢ from +100 to 0 V and -100 to 0 V, respectively.

To directly visualize the details of cracks, scanning electron microscopy (SEM) was utilized to image the cracks morphology as
Ve was swept from -100 to 0 V and from +100 to 0 V, respectively. As shown in Figure Al(c), after sweeping V¢ from -100
to 0 V, three interlaced cracks with a triangular distribution were in different states, two of which were open and the other was
closed. After that, when V¢ swept from +100 to 0 V, these two originally opened cracks changed to closed state, while the state
of the other one remains unchanged (Figure Ald). Therefore, under the out-of-plane voltage, cracks are irregular and randomly
distributed in the MnPt film. In addition, although non-volatile opening and closing of crack can be driven by such out-of-plane
voltage, such switching is very complicated, which is not conducive to large-scale integrated applications.

Appendix B Experimental and analytical methods

(1) Materials preparation and fabrication of crack-based devices
The ferroelectric substrates used were (001)-oriented [Pb(Mgy,3Nbs/3)03]0.70-[PbTi03]0.30 (PMN-PT) single crystal with the
size of 5 x 5 x 0.5 mm?® and double side polished. A MnPt intermetallic alloy thin film was integrated on the PMN-PT substrate.
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Here, MnPt intermetallic alloy film was used mainly because of its two features: one is moderate mechanical property between
ductile and brittle materials [1,2], and the other one is excellent conductivity [3]. In actual experiment, a 40 nm MnPt thin film
was deposited onto PMN-PT substrate from a MngoPts¢ metallic target using a radio frequency (RF) magnetron sputtering system
at room temperature. The Ar pressure was kept at 0.2 Pa and the RF source power was 20 W during the sputtering. After that,
the MnPt film was patterned into designed structures via photolithography and argon ion milling. At the end, 20 nm Pt film was
deposited on designed area by DC sputtering and lift-off process. The sputtering power and Ar pressure were kept at 20 W and
0.2 Pa, respectively.

(2) Cracks monitoring and morphology characterization

Electrical contacts onto electrodes area were made by electron probe with probe station. The crack generating and open-
ing/closing state were monitored by an optical microscopy system with a digit charge coupled device (CCD) system. To induce
the cracking, a triangular cyclic voltage was applied between the upper and lower electrodes via Keithley 2410 source meter. After
the crack was induced, the dynamic opening and closing were visible under the CCD system. Then, the nonvolatile open- and
closed-state of the crack was characterized by a Bruker AFM system.

(3) Electrical measurements

To control the crack states (open and closed), Keithley 2410 source meter was used to applied an in-plane cyclic control voltage
between the upper and lower electrodes. During the voltage sweeping, the electrical resistance measurements were carried out by
Keithley 2400 and 2450 source meters. A constant voltage across the crack and measured the channel current. Pulse measurements
for repeatability testing were made by both Keithley 2410, 2400 and 2450 source meters.

(4) Electric field distribution simulations

The electric-field distribution of designed devices was analyzed using COMSOL Multiphysics software. The parameters and
boundary condition of electric-field simulation are as follows:

(i) Parameters

The independent full matrix parameter of PMN-PT single crystal can be expressed as [4]:
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In which, c;; is the elastic stiffness constant under constant E, 1010 N/mz;
d;ij; is the dielectric constant under zero stress, 1012 C/N;
e is the dielectric constant under zero stress, £q;
p is the mass density, kg/m?>.
Specifically, the parameters of (001)-oriented PMN-30PT single crystal can be given in the following matrix [5]:
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(ii) Boundary condition

In the simulation, a PMN-PT single crystal poled along [001] direction was used as the ferroelectric substrate with the dimension
of 5 mm x 5 mm x 0.5 mm. The thickness of MnPt layer was set to 40 nm. We simulated the electric-field distributions of the
devices in two sizes. The side lengths of the triangular MnPt electrode areas were 100 pm and 1 pm, and the corresponding gap
width between two separate MnPt electrodes were 30 pm and 300 nm, respectively.

In addition, the PMN-PT ferroelectric substrate was set to be insulated, and the MnPt electrode area was conductive. The
in-plane voltage V¢ was applied onto these two separate MnPt electrodes, in which, the upper electrode was used in grounding
and + V¢ was applied onto the lower electrode. The V¢ applied onto these three devices were 25 V and 1 V, respectively.

Appendix C Non-volatile switching of single-crack

For the non-volatile switching of single-crack, the optical image of the fabricated device was shown in Figure C1(a) and the enlarged
image of the central region was shown in Figure C1(b). The dimension of central MnPt strip is 10 um x 20 um. The gap distance
between the central MnPt strip and the upper/lower Pt electrodes (di and dsz) are both 10 um. In addition, the Pt electrodes at
the left and right ends of the MnPt strip were used to prevent potential cracks generation in these areas.

The device structure is schematically demonstrated in Figure C2(a), in which the electrode C, D are used to induce and
manipulate the crack. Moreover, the opening and closing state of crack can be confirmed by detecting the resistance between
electrodes A and B. To induce crack, an in-plane triangular cyclic voltage (V) with an amplitude of 40 V and a period of 160
s (Figure C2b) was applied between C and D. After that, a switchable crack with microscale length was distinctly visible in the
MnPt strip under the optical microscope (Figure 1a). To examine the effect of the crack switching (opening and closing) on the
resistance of MnPt strip, the electrical resistance measurement was performed by a two-probes method, as shown in Figure C2(a).
During the sweeping of V ¢, the channel current I;4 was collected when a constant voltage of 1 mV was applied between A and B.
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Figure C2 (a) Schematic of the electrical measurement geometry. (b) The electrical waveform for both inducing and manipulating
crack.

Appendix D Complementary switching of two-crack

To prepare the complementary two-crack-based device, the MnPt thin film was directly etched into two separated triangular areas.
The optical image of the fabricated device was shown in Figure D1(a). The side length of each triangular MnPt electrode is 100
pm, and the gap distance of these two electrodes is 30 pm. To induce the crack in each MnPt area, a cyclic V¢ was applied
between these two MnPt areas. The device structure and electric measurement geometry are represented in Figure D1(b). In each
MnPt area, one crack will generate and then propagates through the MnPt area by applying an V & between these two MnPt areas.
Then, we also performed electrical resistance measurements for the complementary switching of these two cracks. A similar V¢
with a smaller amplitude was used to control the complementary switching of these two cracks. A small constant voltage of 1 mV
was applied across crack-1 and crack-2, respectively. Meanwhile, the channel currents 1 and I, were measured.

Figure D1 (a) The optical images of the complementary two-crack based device; (b) The schematic of the heterostructure and
clectrical measurement geometry.

The local morphology features of the crack-1 can be characterized by atomic force microscopy (AFM), as shown in Figure D2(a)
and D2(b). As seen in Figure D2(a), the crack-1 is open with the gap width of 40 nm after scanning V¢ from +50 to 0 V. In
contrast, figure D2(b) shows a closed stated after V¢ varied from -50 to 0 V. It should be note that these images were collected
after removing V¢, indicating a non-volatile switching of crack.
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Figure D2 (a) and (b) AFM images of the crack-1 after scanning V¢ from +50 to 0 V and from -50 to 0 V, respectively.

Appendix E Switching mechanism of cracks and device scaling

Figure El(a) shows the schematic configuration of electric field decomposition. Obviously, the distributions of E. in these two
separated areas are in opposite directions, while F, are always the same. The simulated F, and F, distributions are shown in
Figure E1(b) and E1(c), respectively. Accordingly, the magnitude of E, was close to zero values within these two triangular areas,
and E, was symmetric relative to z-axis, which is not in accordance with the complementary switching feature.
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Figure E1 (a) Configuration of the electric field decomposition. (b)-(c) E; and E, distribution in the two-cracks-based device
using COMSOL Multiphysics simulation.

Further, a series of devices with different dimensions and electrode shapes were fabricated to examine the reliability of crack
formation and switching, as shown in Figure E2(a)-4(c). In our experiments, different switching behaviors of cracks can be easily
achieved by designing simple device layouts. For instance, the switching of single-crack case (Figure E2a) and complementary
switching of two-crack case (Figure E2b) can be effectively reproduced and manipulated by V. Interestingly, in our design,
complementary switching of single-crack can be found, as shown in Figure E2(c). Similarly, under the V¢, one half of the crack
will open and the other half will close, leading to a single-crack-based complementary switching. Thus, the crack formation and
switching can be effectively controlled via such patterned structures, which would offer a scalable and flexible route to construct
energy-efficient and high-density crack-based applications.

Appendix F  Application for energy-efficient and high-density reconfigurable logic (RL)

The optical image of a two-crack based device with separated input and output signal paths for RL application is shown in Figure
Fl(a), and the enlarged detail view of the central region is shown in Figure F1(b). The gap width between the upper and lower
Pt electrodes (d1) is 10 pm and the dimensions of top end region of these two electrodes are both 6 um x 40 pm. In addition, the
dimensions of the MnPt strips on either side of the central Pt electrodes are both 6 pm x 30 um, and the gap widths between the
MnPt strip and the central Pt electrode (d2 and d3) are both 6 pm.

Such device mainly consists of two parts: (1) two cracks with complementary switching in Pt electrodes actuated by V¢, (2)
the current readout path in MnPt intermetallic strips controlled by the states of extended cracks. During writing operation, the
cracks states are determined by applying V ¢ onto these two Pt electrodes. While a non-destructive readout operation is performed
by examining the currents across the cracks in MnPt strip using a constant voltage of 1 mV.

For the endurance measurement, it should be noted that the ON-state of the device will be unsustainable with an increase of
the number of switching cycles, which is caused by the contact contamination of electrode material and the uneven contact surface.
In the future, an ultra-high endurance of such crack-based device can be realized by using the robust contact material and the
ferroelectric material with regular domain structure [6,7].
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Figure E2 Precise control of crack formation and switching with different device configurations. (a) Switching of single-crack-
based device; (b) Complementary switching of two-crack-based device; (¢) Complementary switching of single-crack-based device.

Figure F1 (a) The full-size optical images of the two-crack based device with separate input and output signal paths; (b) The
enlarged detail view of the central region.
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Figure F2 Schematic of the device structure and resistance measurement setup.



