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Appendix A

Appendix A.1 Parameters and notation

In order to conveniently demonstrate the automatic train regulation problem in cases of disturbances and describe the proposed

optimization model, the relevant indices parameters and variables are listed in Table A1. We consider a metro single line in this

research as shown in Fig. A1, where stations are numbered as 1, 2, · · · , |I| and inter-stations are numbered as 1, 2, · · · , |I| − 1.

Table A1 Parameters and Variables

i Index of the metro station, where i ∈ {1, 2, ..., |I|}
j Index of the metro train, where j ∈ {1, 2, ..., |J|}
li,j The number of left-behind passengers on the platform when train j departs from station i

wi,j The number of waiting passengers on the platform before train j arriving at station i

ft
i,j The free capacity of train j when it dwells at station i

oi,j The number of in-vehicle passengers before train j arriving at station i

ai,j The number of alighting passengers when train j dwells at station i

bi,j The number of boarding passengers when train j dwells at station i

ei,j The number of passengers who are allowed to enter the platform before train j arriving at station i

fp
i,j The free capacity of the platform before train j arriving at station i

si,j The number of passengers who are blocked outside the platform before train j arriving at station i

mi,j The number of passengers who want to enter the platform before train j arriving at station i

ni,j The number of passengers who arrive at station i during a departure interval

Ru
i−1,j The upper bound of the running time of train j in section i− 1, i ∈ {2, ..., |I|}

Rl
i−1,j The lower bound of the running time of train j in section i− 1, i ∈ {2, ..., |I|}

λi,j The passenger arrival rate at station i during one departure interval

ωi,j The alighting ratio of train j at station i

CT The maximum allowable capacity of the metro train

CP The maximum allowable capacity of the platform

W l
i,j The lower bound of the dwell time of train j at station i

Wu
i,j The upper bound of the dwell time of train j at station i

H1 The minimum safety interval between two trains in the same section

H2 The minimum safety interval between two trains at the same station

Ai,j The time when train j arrives at station i in planned schedule

Di,j The time when train j departs from station i in planned schedule

xi,j Decision variables, the actual time when train j arrives at station i

yi,j Decision variables, the actual time when train j departs from station i
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Figure A1 Typical metro line sketch
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Appendix A.2 Problem Assumptions

To support the rationality of the proposed model, we make the following assumptions.

1). The duration of the initial delay can be predicted accurately when the disturbance occurs. The impact of the disturbance

on other connected lines is disregarded since we only focus a single line in this research.

2). The number of passengers who arrive at the station during one departure interval is assumed to be distributed uniformly [1].

We also do not consider the transfer passengers since a single metro line is considered in this paper.

3). The skip-stop pattern and train holding strategy is not considered in this paper. The meeting and overtaking operation of

trains is not allowed in this study since there is no side track at the metro platform.

Appendix A.3 The passenger flow simulation model

When the metro train dwells at the station, the dynamic exchange of passenger flow occurs between the vehicle and the platform,

that is, passengers waiting at the platform board the train, and passengers who need to get off the train enter the platform. Figure

A2 illustrates the state of the passenger flow and trains at time T . The capacity of trains and platforms is limited, the passengers

cannot enter the platform once the crowdedness degree of the platform reaches its allowable capacity, and not all the passengers on

the platform can board the train. However, most previous studies [2–11]on train regulation/timetabling problems do not consider

the capacity constraints of trains and platforms, which is inconsistent with the actual situation. In this section, we intend to build

a detailed passenger flow simulation model to evaluate the objective of the proposed optimization problem.
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Figure A2 Illustration of the state of passenger flow and trains at time T

When passengers accumulate due to delays, the principal task of the dispatcher is to evacuate the passenger flow on the platform

as soon as possible, that is, the fewer stranded passengers the better. The number of left-behind passengers when train j departs

from station i depends on the number of waiting passengers and the free capacity of the train, which can be denoted as

li,j = max{(wi,j − fti,j), 0}. (A1)

The number of passengers waiting at station i before train j arriving consists of the left-behind passengers after the last train

i − 1 leaving and the newly-entered passengers on the platform. Thus, the number of waiting passengers on the platform can be

expressed as

wi,j = li,j−1 + ei,j . (A2)

The free capacity of the train after passengers getting off it can be given by

f
t
i,j = CT − oi,j + ai,j . (A3)

The number of onboard passengers when train j arrives at station i is equal to that when the train left the previous station,

which can be expressed as

oi,j = oi−1,j + bi,j − ai,j . (A4)

When the train dwells at the station, the number of passengers who will alight from train j at station i is assumed to be

proportional to the number of passengers in the train j [9], which can be expressed as

ai,j = ωi,j · oi,j . (A5)

The number of passengers who can board train j at station i can be given by

bi,j = min{fti,j , wi,j}. (A6)

The number of allowable-entering passengers on the platform depends on the free capacity of the platform. The passengers

on the platform include passengers alighted from the train, passengers waiting to board the train, and passengers who have just
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arrived at the platform. The sum of the number of these passengers is not allowed to exceed the maximum allowable capacity of

the platform, otherwise, it will cause potential safety hazards. The number of passengers who can enter the platform is given by

ei,j = min{fpi,j ,mi,j}. (A7)

Before the train j arriving at station i, passengers left behind by the former train j − 1 are still on the platform. There also

should be enough room on the platform for passengers who will get off train j. Thus the free capacity of the platform when train

j arrives at station i can be expressed as

f
p
i,j = CP − li,j−1 − ai,j . (A8)

Due to the limited capacity of the platform, some new arrival passengers might be blocked outside the platform. The number

of these passengers can be denoted as

si,j = max{(mi,j − fpi,j), 0}. (A9)

The total number of the passengers who want to enter the platform when train j arrives at station i can be expressed as

mi,j = si,j−1 + ni,j . (A10)

Based on assumption 2, the number of new arrival passengers during a departure interval can be denoted as

ni,j = λi,j · (yi,j − yi,j−1). (A11)

Appendix B
Cuckoo are famous for their aggressive procreation strategy that they lay eggs in the nest of other birds and clear away eggs of the

host bird from the nest. In cuckoo search algorithm, a group of nests is regarded as a population, and the eggs in each nest are

regarded as a feasible solution to the optimization problem. The cuckoo randomly chooses a nest to lay eggs as a new solution to

replace the worse solution. At the same time, a certain proportion of the host bird’s nest will be abandoned and replaced by a new

solution created randomly.

As we all know, randomization plays an important role in the search mechanism of meta-heuristic algorithms, the essence of

which is the random walk [12]. The Lévy flight is adopted in Cuckoo Search as the position update method of solutions, which is

kind of an efficient random walk. Given a solution ~x for the nest i, the next position of it can be expressed as

~xi(t+ 1) = ~xi(t) + α⊕ L(u, v), (B1)

where t is the index of the current iteration; α is a positive number which means the step size coefficient and should be related

to the interests of the optimization problem; ⊕ is the XOR operator which means entry-wise multiplications; L(u, v) stands for a

Lévy flight. Currently, the use of Mantegna algorithm is one of the most effective methods to achieve Lévy flight [13], which can

be given by

L(u, v) =
u

|v|
1
β

, (B2)

where u and v both follow a normal distribution, which is

u ∼ N(0, σ
2
u), (B3)

v ∼ N(0, σ
2
v), (B4)

where

β ∈ [1, 2], (B5)

σv = 1, (B6)

σu =

{
Γ(1 + β)sin(πβ/2)

Γ[(1 + β)/2]β2(β−1)/2

}1/β

. (B7)

Next, we introduce the procedure of solving automatic train regulation problem by Cuckoo Search algorithm. The detailed

procedures are described as follows.

Step 1 Initialize parameters, which consist of the nest population size Nsize, the discovery probability Pa, the total number

of iteration Niter, the passenger flow information, the original schedule and the disturbance information.

Step 2 Solution encoding. In CS algorithm, eggs in each nest stands for a solution. The decision variables of the proposed

model are the arrival time xi,j and the departure time yi,j , which are regarded as the nest and encoded in decimal form. The

structure of the nest is shown in Fig. B1.

Step 3 Generate the population. In order to improve the diversity of the initial population, the nest position ~xi is initialized

randomly, which follows normal distribution. Evaluate the fitness of each nest according to the objective function and the passenger

flow model; find the current best nest k.

Step 4 Randomly get a cuckoo i. In other words, generate a new solution by Lévy flight and calculate its fitness value F (i).

Step 5 Randomly select a nest j and calculate fitness value F (j). Note that nest k cannot be selected. Compare the fitness

cost of nesti and nestj, keep the better one as a solution.
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Figure B1 The nest encoding structure

Step 6 Discovery and abandon. Generate a random number r, if r < Pa, find the worst nest whose fitness value is the

largest, then update its position by Lévy flight.

Step 7 Solutions sort. Rank all solutions according to the fitness value, and record the best nest and its cost.

Step 8 Termination condition. When the maximum number of iterations Niter is reached, return the optimal solution and

its cost. Otherwise, go to Step 4 and continue to iterate.

Appendix C

In this section, we conduct several experiments based on the operation data of Beijing Subway Line 9 to demonstrate the proposed

model and algorithm. The Beijing Subway Line 9 consists of 13 stations and 12 sections, which is also a busy metro system, the

passenger flow in several stations is oversaturated during peak hours. Once a disturbance occurs, it is likely to cause the passenger

flow to accumulate on platforms due to the service gap. Thus an effective regulation solution integrating the information of the

dynamic passenger flow is essential to improve the operation and service quality. The simulation environment of case studies and

the Cuckoo Search algorithm is coded in Matlab R2014a and run on a personal computer with 1.6 GHz Intel Core i5 processor and

8 GB RAM.

Normally, there are 21 trains operating on Beijing Subway Line 9. We take the train running from the National Library to

Guogongzhuang as the experimental object. The control time window considered in case studies is from 7:30 to 9:00 in morning

rush hours and the start time is set as 0 for the sake of convenience. The data of planned running time in each section and dwell

time at each station is listed in TableC1. The scheduled departure interval is set as 180 s. Then the original timetable can be

obtained, the corresponding train time-distance diagram is shown in Fig. C1. The trains are named train 1 to train 21 in order

from left to right. The data of lower and upper bounds for the rescheduled dwell time and running time are listed in Table C2.

The passenger arrival rate and alighting ratio can be estimated based on the historical passenger flow data from the Automatic

Fair Collection (AFC) system and the statistical technique [5].The passenger flow data adopted in this research is from article [9].
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Figure C1 The original train diagram

Appendix C.1 Parameter tuning and validity verification for the algorithm

In this section, we use a typical delay scenario to validate the effectiveness of the proposed method. We set up several sets of

parameters and select the best set as the parameters of the cuckoo algorithm to solve automatic train regulation problem. We

assume that a medical emergency occurred when the eighth train dwells at the fifth station (Beijing West Railway Station), which

causes a departure delay with the duration of 130 s. In other words, s = 5, t = 8 and ds,t = 130.
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Table C1 Planned schedule of Beijing Subway Line 9

Station Name Station Index (i) Dwell time (s) Section Index (k) Section length (m) Running time (s)

National Library 1 45 1 1096 100

Baishiqiao South 2 60 2 1044 100

Baiduizi 3 35 3 1912 146

Military Museum 4 60 4 1398 122

Beijing West RS 5 60 5 1171 112

Liuliqiao East 6 35 6 1309 123

Liuliqiao 7 60 7 1779 147

Qilizhuang 8 45 8 1326 109

Fengtaidongdajie 9 30 9 1585 119

Fengtainanlu 10 35 10 980 87

keyilu 11 30 11 788 77

Fengtai SP 12 30 12 1348 128

Guogongzhuang 13 45 - - -

Table C2 Parameter of the operation data

Station Minimum dwell time maximum dwell time section minimum running time maximum running time

1 30 65 1 94 120

2 40 75 2 92 120

3 20 55 3 136 166

4 40 75 4 114 142

5 40 75 5 104 132

6 20 50 6 112 143

7 40 75 7 135 167

8 35 60 8 105 129

9 20 50 9 108 139

10 20 55 10 81 107

11 20 50 11 72 97

12 20 50 12 120 148

13 30 55 - - -

The step size coefficient α is related to the scale of the optimization problem and the discovery rate Pa balance the local search

and the randomization. Therefore, we need to select a set of suitable parameters (α, Pa) from several sets of candidate parameters

to optimize the performance of the algorithm. The number of the nest Nsize and the maximum number of iteration Niter are set as

25 and 100, respectively. The weight of the total train delay and the number of stranded passengers are 0.5 and 0.5 respectively.

The normalization values of two objectives are calculated based on a heuristic algorithm in paper [6]. The normalization value for

the total train delay is 1901 s and that for the total stranded passengers is 1413 pax. Each group of tests runs independently 100

times and the effect of different parameter sets on algorithm performance is shown in Table C3, where the the success rate refers to

the ratio of the number of times the cuckoo algorithm gets the optimal solution to the total number of simulations under a given

parameter set. As shown in Table C3, we conducted 9 groups of tests, and parameters of the fourth test performed best. Thus we

set α and Pa as 1.0 and 0.25 respectively in the rest of the experiments.

In order to validate the importance of considering the limitation of the platform capacity, we conduct a control experiment

which does not consider the platform capacity constraints. In the control experiment, we delete platform capacity constraints from

the proposed model and adopt the CS algorithm to solve the new model. Comparing the solutions obtained by the new model and

the original model, the total train delay time are 1672 s and 1526 s, respectively. As shown in Fig C2 and Fig C3, the total number

of stranded passengers are 1263 pax and 1027 pax, respectively. It can be seen from the comparison of the results that the solution

obtained by the new model is less effective than that obtained by the proposed optimization model. This is because ignoring the

platform capacity leads to an increase in the number of stranded passengers on the platform and aggravates train delays at the

same time.

In order to validate the effectiveness of the cuckoo search in solving automatic train regulation problems, we compared the

proposed method with the standard PSO algorithm and a heuristic method called FRM proposed in paper [6]. The parameters for

the PSO algorithm in this paper are same with it in study [3]. The timetable comparison results of the three methods mentioned

above are shown in Fig C4, where the blue solid line represents the regulation solution by the cuckoo search algorithm, the green

and red ones express the new schedule with the PSO and FRM algorithm, respectively. The calculation results for the total train

delay with these three methods are 1526 s, 1597 s and 1901 s, respectively. As shown in Fig C4, the number of the affected trains is

the least when using the cuckoo search algorithm and the regulation process has the shortest duration. The number of the affected

trains is the same when using the PSO and FRM methods and the regulation process has the longest duration with the FRM

algorithm. The calculation results of the total number of stranded passengers using the CS, PSO and FRM algorithm are 1027

pax, 1058 pax and 1413 pax, respectively. The distribution of the stranded passengers during the regulation process by using the

three algorithms are illustrated respectively in Fig C2, Fig C5 and Fig C6. Compared with the FRM algorithm, the CS and PSO

algorithm can efficiently reduce the number of passengers stranded on platforms and the number of stranded passengers by using

Table C3 Optimization results for different parameter sets

Test number α, Pa Optimal result Worst result Number of success Number of runs Success rate

1 0.5, 0.25 0.768 0.823 98 100 98%

2 0.5, 0.5 0.768 0.823 92 100 92%

3 0.5, 0.75 0.768 0.926 81 100 81%

4 1.0, 0.25 0.768 - 100 100 100%

5 1.0, 0.5 0.768 0.823 93 100 93%

6 1.0, 0.75 0.768 0.926 78 100 78%

7 1.5, 0.25 0.768 0.823 92 100 92%

8 1.5, 0.5 0.768 0.926 86 100 86%

9 1.5 0.75 0.768 0.926 74 100 74%
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Figure C2 Total stranded passengers with the

platform capacity constraints

Figure C3 Total stranded passengers without the platform

capacity constraints
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Figure C4 The comparison of three train diagrams

Table C4 Computation results of different delay scenarios

Delay scenario Algorithm
The number of

affected trains

Total train

delay time (s)

The number of total

stranded passengers (pax)
Optimal results Computation time (s)

1. (4, 5, 100)
FRM

CS

4

3

991

802

748

425

-

0.689

-

7.23

2. (6, 5, 100)
FRM

CS

4

3

1029

831

912

671

-

0.772

-

7.31

3. (5, 8, 150)
FRM

CS

6

5

2755

2206

2036

1719

-

0.823

-

7.56

4. (5, 8, 200)
FRM

CS

8

6

5923

4674

3183

2859

-

0.844

-

7.61

5. (5, 8, 300)
FRM

CS

11

8

16750

12999

5505

3975

-

0.749

-

8.05

the CS algorithm is the least.

The performance comparison between the CS and PSO algorithm is shown in Fig C7. The convergence curve of two objectives

by using CS algorithm is illustrated in Fig C8 and Fig C9, respectively. The convergence speed and optimal solution of the CS

algorithm outperform that of the PSO algorithm.
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Figure C5 Total stranded passengers using the

PSO

Figure C6 Total stranded passengers using the FRM
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Figure C7 Convergence of the CS and PSO algorithm
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Figure C8 Convergence of the total stranded pas-

sengers of the CS

Figure C9 Convergence of the total delay of the CS

Appendix C.2 Different weights for objectives

In order to demonstrate the effect of different weight on the objective function, we consider more experiments in the following

discussion. The delay scenario and the parameters of the cuckoo search algorithm are the same with that in Appendix C.2. The

weight coefficients for the total train delay and the total number of stranded passengers on platforms is investigated, which the

range is set as a1 ∈ (0.0, 1.0) and a2 ∈ (0.0, 1.0), and the sum of these two coefficients is equal to 1. The computational results

of each weights set for the proposed model solving by the cuckoo search algorithm are listed in Table C5 and the corresponding
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performance variation curves are shown in Fig C10.
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Figure C10 Different weights for objectives

Table C5 Computational results with different weights by the CS algorithm

a1, a2 Train delay (s) Stranded passengers (pax) Objective cost

0.0, 1.0 1695 963 0.682

0.1, 0.9 1647 972 0.706

0.2, 0.8 1631 981 0.727

0.3, 0.7 1593 994 0.744

0.4, 0.6 1547 1012 0.755

0.5, 0.5 1526 1027 0.765

0.6, 0.4 1513 1051 0.775

0.7, 0.3 1501 1136 0.794

0.8, 0.2 1494 1185 0.796

0.9, 0.1 1486 1241 0.791

1.0, 0.0 1478 1283 0.777

As shown in Fig C10, the value of each item will decrease as its weight increases. This can provide a clear guidance for metro

operators, who can choose the appropriate set of coefficients to make a trade-off regulation decision between reducing the deviation

from the original schedule and the total number of the left-behind passengers, or to achieve other purposes for the certain interests.

Appendix C.3 Different delay scenarios

In order to validate the reliability of the proposed method for solving automatic train regulation problem, we design several delay

scenarios with different disturbance locations and the duration of initial delay. We use (s, t, ds,t) to denote the delay scenario,

where s represents the station where the disturbance occurs, t expresses the metro train in trouble and ds,t means the duration of

the initial delay. The weights for each objective are set as 0.5 and 0.5, respectively.

The computation results for different delay scenarios are listed in Table C4. As the duration of the initial delay increases, the

number of affected trains will increase and the corresponding total train delay time will also increase dramatically. This is because

the reserved capacity of the original timetable is limited, longer initial delay will need more buffer times to be absorbed and thus

more trains and passengers will inevitably be influenced. Due to the train and platform capacity limitation, the growth rate of the

total number of stranded passengers is much slower than that of the total train delay time. In addition, the computation times of

the proposed method for different scenarios (even for the larger disturbance that 8 trains need to be rescheduled) is short enough,

which can satisfy the real-time requirements for automatic train regulation in practice.

Note that, for a certain metro line, the minimum allowable headway is determined. Thus, the larger the operated headway (i.e.

the departure time interval) is, the higher the ability of recovery will be. However, a smaller departure time interval means the

metro system can transport more passengers at the same control time window. If the operational headway becomes smaller (e.g.,

150s or 120s), the metro system still can recover from delays since there is still the reserve headway capacity. However, the number

of affected trains will be more than the condition when the departure time interval is 180s.
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