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Appendix A Assumptions

Consider the following distributed optimization problem over an n-agent network [9]:

min  f(z), f(z)= Zlfi(wi)
s.t. xy =z € X (A1)
where & = [11'—, J;;, ey J,I]T € R™, x; € RP, fi : RP — R is a convex function, X is the global constraint.

First, we provide an assumption about the communication topology between agents over the network.

Consider a time-varying multi-agent network. The communication topology between agents over the network is described by a
directed graph G(k) = (N, E(k), W(k)), where N' = {1,2,...n} is the agent set, £(k) C N XN represents information communication
links at time k, and W (k) = [wi; (k)]ij represents the adjacency matrix at time k. In addition, denote N; (k) = {j|(i,j) € E(k)}
as the neighbors of agent ¢ at time k. Each agent interacts with its neighbors in G(k) = (N, E(k), W (k)) at time k. The following
assumption is on the communication topology G(k) = (N, E(k), W (k)), which is widely used in distributed time-varying network
designs ( [8]. [9]).

Assumption 1. The graph G(k) = (N, E(k), W(k)) satisfies:

(a) There exists a constant n with 0 < n < 1 such that, Vk > 0 and Vi, j, ws; (k) = n; wi;(k) = n if (4,1) € E(k).
(b) W (k) is doubly stochastic, i. e. 337", w;;(k) =1 and 3°7" | wi; (k) = 1.

(c) There is an integer x > 1 such that Vk > 0 and V(j,i) € N x N, (j,i) € E(k)UEk+1)U---UE(k+ Kk —1).

The following assumption holds for local functions and constraints of Problem (A1l):

Assumption 2.  (a) Problem (A1) has solutions.

(b) fr,(z) and fg,(x) are convex functions with fr,(z) < fr, ().

(¢) X is a non-empty, compact, convex constraint set in RP.

(d) The gradients of fr,(x) and fr, (x) are locally Lipschitz continuous with constant L.
Then, we assume the following assumption holds for parameter A; of Problem (A1l):

Assumption 3. There exists a common Ao € (0, 1), such that for all agents i € N/,
gi(z) = Xofr,; () + (1 = Xo) fr; (x).

Assumption 3 gives the characteristics of stripe observations Yz, () and YR, (z), which results from inherent errors of measuring
devices or methods over the network. (£*, A\o) is the optimal solution to Problem (?7?), and (£, A\o) is expected exact solution to
Problem (A1) with stripe observations Yz (z) and Ygr(z) under Assumption 3.

Next, we give different probabilistic choices of each agents’ initial preferences \;(0) for Algorithm 1.

Assumption 4.  (a) Each agent i has an initial preference A;(0) with Ag = >_7"_; X;(0).
(b) Each agent ¢ has an initial preference A;(0). X;(0)s are independent and identically distributed (i.i.d.) random variables with
EX; (0) = Ao.
(c) Each agent ¢ has an initial preference X;(0). X;(0)s are independent and identically distributed (i.i.d.) random variables with
EX;(0) = Ao, varX;(0) = v2.
Assumption 4(a) is an ideal assumption that although each agent gets incomplete information of X\;(0), they could get the com-
plete information of Ag through cooperation. Assumption 4(b) and (c) are general probabilistic assumptions of agents preferences.
Still, the following assumption holds for parameters { Al (k)}k>0 of Algorithm 1:

Condition 1. (Parameter selection)
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(a) Let { A7 (k)
k > 0 and (¢,q),

}k>0 be a sequence of independent and identically distributed (i. i. d.) random variables, for any fixed (i, q), all

| & (k)| < My, 'N;(k)‘ < Mo, E[%] =0

(b) { A (k)}k>0 and { A} (k)}]920 are mutually independent of each other for i # j or q # r.

Remark 1. In order to ensure the almost sure convergence of Algorithm 1, {c(k)} and {L(k)} should satisfy the stochastic
approximation assumption [29]

o~k R k)
;c(m - ,;lc%k) B
and

[eS]

Z t(k)e(k) < oo.
k=1
1
Therefore, 0 < € < 7 3—€>d0>e

With the stripe observation environment of the distributed problem, % chosen in this paper differs from that of [17].

Appendix B Proof of Theorem 3

The following lemma, is essential for the proof of Theorem 3.

Lemma 1. With Assumption 3, [[g(2*, A(0)) — g(&", Xo) | < [A(0) = Ao| - ||£2 (27) ~ fr(37)
Proof. We get

|a(@". A0) - g(:z*Ao)H

=3 MO, () + (= MO, (5)] = 3 [z, (57) + (1 = A) i, ()] < [P + P (B1)
i=1 i=1
where
T'in =§n: |:)\(0)(fLi (z%) = fr, (x*)) + (1= x(0)) (fRi (z*) — fr, (x*))}
i=1

n

on =3 [(A(O) —20) (fr; (@) = fry ()]

i=1

According to Assumption 2(b), we obtain

Fri(@®) = fu, (7)) < (Vi (@7),0" —37)

Frg (@) = fry (37) < (Vir, (27), 2" = 7). (B2)
It yields
[l = 35 [0 () = 1,6) + 0= 20) (5, 67) = g, @*))]H
< ij (MO (27) + (1= A©O) fr, (= }H |£2: @) = fr, ()| (B3)
Since (z*, A(0)) is an optimal solution of the distributed problem, we have
g:l [AO)f2; (%) + (1= A0) fr, (=7)] =0. (B4)
Therefore, 7
e =0 (85)
Combining (B5) with (B1), yields
lo(@" A(0) = g(@", 20)|| < [A(©) = o - || 1. (&") = fr(3") - (B6)

Lemma 1 gives an upper bound of Hg(m*, A(0)) — g(2*, o) H
Next, we provide the proof of Theorem 3.
Proof.
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(a) Theorem 3 is a direct conclusion of Lemma 1 and the fact that A\g = A(0) with Assumption 4(a).
(b) According to the law of large numbers [23],

nIme P(IIA0) = Xoll <€) = 1.

It yields

i e (oo A@) ~ 966" )| < ea(57)) =1

(¢) The following equality holds according to the central limit theorem [23]:

lim P<7\/ﬁ(>\(?}) o) < z) = ¢(z)

where ¢(z) is the cumulative distribution function of Gaussian distribution A/(0,1). With Lemma 1, we get

nlemP(|‘g(m*,A(0)) = g(@", X0) || < aco (i»*)) > lim_ P(|)\(O) — ol < a)

(A L) (42 o) ()

v v
and
. * L % .
nl;m@P(“g(m A(0)) — g(& ,AO)H > beo (& )) < nl;mmp(\x((]) ~ ol > b)
:P<7\/ﬁ|)\(0) = ol > @> =1 —¢(@> +¢( - @> —2_ 2¢<@>.
v v v v v
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