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A. Experimental setup and sample preparation

The time-resolved transient reflectivity signals, ∆R(t)/R, were measured based on a degenerate pump-probe scheme
using a Ti:sapphire laser oscillator that produces ∼55 fs (FWHM) pulses at the sample position with a repetition
rate of 80 MHz. The center wavelength can be tuned between 780 nm and 820 nm. The pump beam directs along
the normal. The probe beam is incident at a ∼ 10 degree angle to the sample normal. Typically, the pump was kept
p-polarized, while the polarization of the probe beam was kept s-polarized (perpendicular to the c-axis or parallel to
the a-axis of the sample). The cross-polarization configuration is used to remove the initial coherent artifacts [1]. The
ZrTe5 single crystals with three different thicknesses of ∼0.1, 0.3 and 0.5 mm were studied in this work, and similar
results were obtained. These crystals were prepared by the Te-assisted chemical vapor transport method [2] or molten
Te flux growth [3]. All the measurements were taken in vacuum (∼ 10−6 Torr).

B. Fit of relaxation processes characterized by τ1 and τs

1. Necessity including the process characterized by τ1

Necessity including the τ1 process can be understood more easily by showing the ∆R data in short timescale.
Fig. S1 evidently demonstrates that it is essential to include such τ1 process in order to fit well the initial slow rising.
Mathematically, failure of fitting the experimental ∆R data without τ1 process arises from the initial rising time
limited by convolution via the Gaussian function G(t), i.e. ∼100 fs, which is far less than what we detected (∼0.5 ps).
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FIG. S1. The transient reflectivity ∆R(t) in short timescale measured at 5 K (black lines). We here employ the equation

∆R = [A1e
−t/τ1 + A2e

−t/τ2 + Ase
−t/τs ] ⊗ G(t) to fit the experimental data. A1 > 0, A2 < 0 and As < 0. The red lines are

fitted curves (a) with and (b) without the τ1 process that has amplitude with opposite sign.

2. Fit of relaxation time τ1 and τs via the two-temperature mode (TTM)

Within TTM, the electron-phonon relaxation time τe−ph is given by[4, 5]:

τe−ph =
γ(T 2

e − T 2
l )

2H(Te, Tl)
, (1)

where γ is the electronic specific heat coefficient. Here,

H(Te, Tl) = f(Te)− f(Tl), (2)

f(T ) = 4gep
T 5

θ4
D

∫ θD/T

0

x4

ex − 1
dx, (3)
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where Te is the electron temperature after electron-electron (e-e) thermalization, which is initially higher than the
lattice temperature Tl. gep is electron-phonon coupling coefficient. The Te can be estimated by:

Te =

√
T 2
l +

2Ul
γ
, (4)

where Ul is energy density of laser light. The fits to τ1 and τs as a functions of temperature are given in the Figs.
2(a) and (e) of the main text, respectively. For τ1, γ = 0.65 J·m−3K−2 and gep = 5.4 × 1015 W·m−3K−1. For τs,
γ = 7.3 J·m−3K−2 and gep = 1.9 × 1015 W·m−3K−1. τ1 and τs as functions of fluence are also given in the S2 (a)
and (b), which can be well fitted using the TTM. Under the condition of Te − Tl � Tl (or low pump fluence regime),
τe−ph can be approximated as: τe−ph ≈ πkBTe

3~λ<ω2> [4, 5]. Since Te increases with the pump fluence increasing, τe−ph
also becomes larger as the pump fluence increases.
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FIG. S2. (a) and (b) are τ1 and τs as a function of fluence (F ). The red solid lines are fit using the TTM.

C. Theoretical fit based on the phonon-assisted recombination process

The strongly temperature-dependent τ2(T ) can be quantitatively described by [6],

1

τ2
= A

~ω
2kBT

sinh2( ~ω
kBT

)
+

1

τ0
, (5)

where ω corresponds to frequency of the phonon mode assisting e-h recombination. τ0 represents a temperature
independent recombination time which varies with sample quality. A is a parameter related to the density of states
in the electronic energy bands and the matrix elements for interband e-h scattering. The fitted results agree quite
well with the experimental τ2 (see Fig. 2(c) in the main text), and strongly justify the presence of phonon-assisted
e-h recombination.

D. Raman spectroscopy data and coherent oscillations via transient reflectivity measurements

We have carried out a detailed temperature-dependent Raman spectroscopy experiment on ZrTe5. As shown in
Fig. S3(a), the peaks indexed by 1, 4, 5, 6, and 7 stand for the Ag phonon modes, and another two indexed by 2 and
3 arise from the B2g phonon modes [7, 8]. Based on Fig. 3 of the main text and Fig. S3, in addition to ω1 and ω2

modes, we clearly detected the Raman-active phonons indexed by 1, 5, and 6 via the oscillatory ∆R(t)/R signals. The
close-neighboring modes indexed by 4 and 5, especially the former, have very low intensity and decay extremely fast,
which lead to a relative broad feature in the Fourier transform spectra. The mode indexed by 7 is out of our detection
limit. Since generation of the coherent optical phonons is associated with the Raman scattering process [9, 10], the
amplitude of detected phonon is very sensitive to the pump or probe polarization of the laser beam relative to the
crystal orientation (see Fig. S3(b) and (c)). Our experiment configuration only allows to initiate the Ag and B2g
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FIG. S3. (a) The temperature dependent Raman spectra of ZrTe5. (b) and (c) The temperature-dependent Fourier transform
spectra for the extracted oscillations. Signals in (c) were obtained via the anisotropic reflectivity measurements.

Raman modes in ZrTe5 [7, 8]. In fact, based on the Raman tensor of B2g mode, its dependence on the polarization
has a sin2θ-like behavior and can be selectively extracted via the anisotropic reflectivity measurements [10], as seen in
Fig. S3(c). The Ag modes are isotropic in contrast to the B2g phonon modes. Some typical temperature-dependent
transient reflectivity data at different wavelengths in the long-time domain are shown in Fig. S4, where various
oscillation signals can be seen.

I believe that they should report the raw data (before the 
removal of non-oscillating decay background) as Supporting 
Information and similar traces for different temperatures.
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FIG. S4. The typical temperature-dependent transient reflectivity data measurements for different wavelengths in the long-time
domain.

We note that the laser pulse chirping could affect the amplitudes of coherent optical phonons [11, 12]. However,
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since the fs pulses arriving at the samples are nearly transform limited via our pulse compression system, this effect
can be safely neglected. Moreover, even if there exists slight chirp effect, its influence on characterizing the sample
quality can also be ignored due to the characteristic phonon frequencies remaining unchanged. Nonetheless, all these
experimental data demonstrate that the ZrTe5 samples we used have very high quality, which is a prerequisite for
the further experiments. Note that we took the phonon mode with highest energy in the Raman data as the Debye
frequency, which was used to extract the electron-phonon coupling constant λ [4].

E. Phonon renormalization as a function of temperature

Renormalization of the T -dependent optical phonons can be characterized by their frequencies (ω) and decay rates
(Γ) in the temperature domain. Here, we mainly focus on discussing quantitatively ω(T ) if not mentioned in the text.
The typical ω results from the ultrafast experiments are shown in Fig. S5. Here, except the mode with frequency
of ∼3.7 THz, in order to obtain ω, a sine damped equation Ae−t/τ sin(2πωt + φ) was used to fit each oscillatory
component extracted via different frequency filter in ∆R/R [13]. For the 3.7 THz mode (indexed by 5 in Fig. S3(a)),
we directly extracted the T -dependent data by picking up the peak values in the Fourier transform spectra. The
mode indexed by 8 with frequency larger than 200 cm−1 is not shown in Fig. S3 but is also listed here. All the
detected Raman peaks (ω) as a function of temperature are given in Fig. S5. Clearly, results from both experiments
agree very well, and demonstrate that there is no anomaly observed near T ∗, which indicates no structural phase
transition happening near T ∗. Frequencies of the optical phonon modes in general present a softening behavior as
the temperature increases. Such T -dependent behavior can be quantitatively explained by the anharmonic phonon
model (solid line in Fig. S5)[14–16],

ω(T ) = ω0 +A1[1 + 2n(ω0/2)] (6)

where ω = 2πf, n(ω) = [e~ω/kBT − 1]−1, ω0 is the bare harmonic frequency. It can be seen that the fitted data are in
excellent agreement with the experimental results.
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FIG. S5. Temperature dependence of the oscillation frequencies for optical phonon modes (blue open squares) extracted from
the ultrafast experiments. For comparison, temperature dependence of Raman peaks (black open dots) in the frequency domain
are also given. The red solid curves are fits to the data using Eq.6.The mode indexes follow those in Fig. S3(a).

Some detail temperature- and wavelength-dependent fitted parameters for two typical optical phonon modes are
shown in Table I. It can be seen that their phases are nearly independent the temperature and wavelength. No
π-phase change was observed in the experiment.
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TABLE I. Some typical fitted parameters such as frequency, phase, and decay rate of the two main coherent optical phonon
modes ∼1.2 THz and ∼4.6 THz as functions of wavelength and temperature.

wavelength (nm) T (K) Frequency (THz) phase decay rate (ps−1) Frequency (THz) phase decay rate (ps−1)

780

5 1.20667±7.00114E-5 2.11933±0.00841 0.00877±3.31789E-4 4.63112±8.0385E-4 2.61005±0.02622 0.02727±0.00385

10 1.20712±6.40336E-5 1.98387±0.00767 0.00913±3.03862E-4 4.62928±7.61999E-4 2.61048±0.02494 0.02398±0.00364

20 1.20686±7.41145E-5 1.86184±0.00881 0.01012±3.53571E-4 4.62581±6.54729E-4 2.60061±0.0215 0.02024±0.00312

30 1.20592±1.03262E-4 1.88142±0.00808 0.01245±3.36259E-4 4.62767±0.00101 2.62536±0.03286 0.0321±0.00488

40 1.20555±6.99085E-5 1.79181±0.00808 0.01314±3.39915E-4 4.62767±0.00101 2.62536±0.03286 0.0321±0.00488

50 1.20392±7.08476E-5 1.86106±0.00807 0.01466±3.47803E-4 4.61547±8.17102E-4 2.61801±0.02649 0.03293±0.00394

60 1.20297±7.15908E-5 1.78258±0.00797 0.01687±3.56736E-4 4.60839±8.84727E-4 2.61967±0.02869 0.0323±0.00427

800

5 1.20835±5.05472E-5 1.81±0.0081 0.0067±1.60839E-4 4.62458±5.07587E-4 2.691±0.01606 0.06672±0.00244

10 1.20772±4.10202E-5 1.84199±0.00649 0.0075±1.33648E-4 4.6223±3.62583E-4 2.99584±0.01041 0.09758±0.00189

20 1.20827±5.68965E-5 1.90525±0.00862 0.00958±1.97633E-4 4.62697±7.78972E-4 2.74425±0.02307 0.08692±0.00395

30 1.20845±9.11741E-5 2.17563±0.01271 0.01276±3.49924E-4 4.60439±7.545E-4 2.50554±0.02149 0.10053±0.00396

40 1.20576±5.57588E-5 2.12886±0.00733 0.01489±2.2812E-4 4.61401±3.56615E-4 2.67556±0.01029 0.09588±0.00185

50 1.20698±1.33617E-4 2.08186±0.0173 0.01542±5.54352E-4 4.61662±7.11324E-4 2.71663±0.01956 0.11276±0.00383

60 1.20471±7.51236E-5 1.97628±0.00907 0.01804±3.33219E-4 4.63944±0.00443 2.74557±0.12128 0.11322±0.02376

100 1.20245±2.48388E-4 1.946±0.02293 0.03211±0.00139 4.54677±0.01236 2.17987±0.09247 0.2917±0.07861

200 1.18774±3.44249E-4 1.794±0.02868 0.04088±0.00199 4.46503±0.002375 2.63163±0.21952 1.05017±0.2636

820

5 1.21008±9.32163E-5 1.89947±0.01159 0.00318±4.33295E-4 4.62218±3.53213E-4 2.60055±0.01125 0.064833±0.00169

10 1.21032±1.0428E-4 1.7643±0.01269 0.00681±4.89699E-4 4.61691±1.45505E-4 2.54113±0.00462 0.06604±6.96964E-4

20 1.20859±6.76924E-5 2.00708±0.00818 0.00794±3.19627E-4 4.61433±1.8211E-4 2.53018±0.00572 0.06889±8.80744E-4

30 1.20881±1.34098E-4 1.87505±0.01594 0.01±6.39376E-4 4.6169±2.53156E-4 2.59892±0.00761 0.08234±0.00127

40 1.20677±7.68158E-5 2.20929±0.00899 0.01189±3.70235E-4 4.61475±3.63396E-4 2.6447±0.01071 0.08884±0.00185

50 1.20585±8.73628E-5 2.07755±0.01017 0.01243±4.22808E-4 4.60542±0.00102 2.65125±0.02532 0.15286±0.00583

60 1.20534±1.31413E-4 2.07668±0.01495 0.01467±6.45146E-4 4.59752±0.00119 2.703784±0.02768 0.17911±0.00696

F. More discussions about the coherent acoustic phonon

In fact, if the low frequency mode characterized by ω1 or ω2 is due to the coherent acoustic phonon, we can
quantitatively estimate the frequency value of the corresponding oscillation for a given probe wavelength using the
formula: T = 1/f = λp(2nVscosθ)

−1 (Refs. [56-58] in the main text). Here, T and f are the oscillation period and
frequency, respectively. n is the refractive index. Vs is the sound velocity. λp is the angle of incidence of the probe
light inside the sample with respect to the normal of sample surface. Using parameters n ∼2 [17], Vs ∼ 103 m/s
(Ref. [62] in the main text), and θ ∼0 and λp ∼800 nm, we can estimate the oscillation period is about 200 ps,
whose corresponding frequency (f = 1/T ) is clearly much lower than ω1/2π and ω2/2π. Such result itself already can
exclude the coherent acoustic phonon.

The change of period is related to the change of wavelength by the derived formula: ∆T = ∆λp(2nVscosθ)
−1.

In our experiment, ∆λp can have a change of ∼40 nm, and then the corresponding ∆T is ∼10 ps, which is a huge
variation in the oscillation signals. Accordingly, if ω1 or ω2 modes arise from the acoustic phonons, the frequency
shift (∆f) could change by a factor of ∼1/2 for the ω1 mode, and nearly by more than one order of magnitude for the
ω2 mode. In our experiment, we covered a time range of ∼0.5 ns with a time resolution of ∼10 fs, it is quite enough
for detecting the changes estimated above. Therefore, based on above analysis we can safely rule out the coherent
acoustic phonons.

G. π-phase difference between 820 nm and 800/780 nm for the ω1 mode

We note there exists a π phase difference for the ω1 mode using light with wavelengths between 820 nm and
780/800 nm. In fact, under the CDW phase, the state of investigated system can be described by an order parameter
Ψ = ∆eiφ, where the amplitude ∆ and phase φ are functions of space and time. During discussion of the optical
response, the dielectric constant within such phase transition can be expanded in powers of the order parameter [18]:
ε ' ε0 + α|Ψ|2 = ε0 + α∆2, where α is a constant solely determined by the intrinsic material properties. Therefore,
fluctuation of the amplitude, δ∆, can be given by: δε ' 2α∆0δ∆, where ∆0 is an equilibrium value, ε and α are
complex numbers given by ε = εr + iεi and α = αr + iαi, respectively.
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On the other hand, in our experiment δ∆ is directly manifested by the corresponding oscillatory transient reflectivity

change [δR]osc, i.e. δ∆ ∝ [δR]osc. Because [δR]osc can be related to ε by [δR]osc = ∂[R]osc
∂εr

δεr+ ∂[R]osc
∂εi

δεi (Supplemental

Material of Ref. [19]), we can obtain

[δR]osc ∝
αr

2|α|2∆0
δεr +

αi
2|α|2∆0

δεi. (7)

When we discuss the wavelength (λ) dependent behavior, since ε is a function of λ, we can rewrite the above
equation as

[δR]osc ∝
1

2|α|2∆0

(
αr
∂εr
∂λ

+ αi
∂εi
∂λ

)
δλ. (8)

Based on such relation, if the coefficient, αr∂εr/∂λ+αi∂εi/∂λ, experiences a sudden sign reversal, then δ∆ and its
associated oscillatory signal [δR]osc should have an immediate π phase change.

Here, two points are needed to be clarified. (1) When we check the wavelength-dependent dielectric constants of
ZrTe5 [17], values of ∂εr/∂λ (or ∂εi/∂λ) along a- and c-axis follow similar λ-dependence, and can undergo abrupt
changes including the sign reversal around some anomalies near 820 nm (∼1.5 eV). (2) Our experiments were carried
out at low temperatures. Since with decreasing temperature the band gaps usually experience a blue shift (dEg/dT <
0) causing a similar effect in absorption features of ε(λ), the related anomalies in εr(λ) and εi(λ) will experience a
blue shift as well. Therefore, it is possible for these anomalies to reside between 780 nm (∼1.59 eV) and 820 nm
(∼1.51 eV) at low temperatures.

Consequently, the coefficient, αr∂εr/∂λ + αi∂εi/∂λ, can undergo a sudden sign reversal and induce a π-phase
difference in δ∆ as the λ varies within the spectral regime of our experiment. Specifically, if the quasi-one dimensional
ω1 CDW mode (along b-axis) is a transverse mode with its amplitude determined by (∂ε/∂λ)a,c, its π-phase difference
between 820 nm and 800/780 nm can then be reasonably explained in this way. We note that the magnitude of
corresponding oscillation is also very sensitive to the above coefficient, as evidently revealed in Fig. 3(d) of the main
text.

When discussing the phase change of high dimensional ω2 CDW mode, we need to include contribution from the
additional (∂ε/∂λ)b term, which behaves quite differently from (∂ε/∂λ)a,c in terms of their absolute values but also
the signs, i.e. (∂εr/∂λ)b > 0 and (∂εi/∂λ)b > 0 for λ between ∼600 nm and ∼820 nm (or hν between ∼1.5 eV and
∼2 eV). Therefore, if introducing the εb-related terms leads to the sign of above coefficient unchanged, the π-phase
difference will not be observed as λ varies within the current spectral regime, as is confirmed by our experiments.

H. Oscillation signals including ω1 and ω2 modes as a function of pump fluence (F )
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FIG. S6. (a) F -dependent oscillation signals (∆R/R)osc signals at 5 K for ω1 and ω2 modes. (b) F -dependent amplitudes and
Fourier spectra from (a). Dashed lines indicate the peak positions of these two modes.

Fig. S6(a) shows the typical oscillation signals (∆R/R)osc as a function of F at 5 K extracted using a low pass
frequency filter with a cutoff frequency of 1 THz. Overall, the signal strength increases with F . Our data fall within
the linear regime, manifested clearly by the amplitude of the ω1 and ω2 modes linearly dependent on F , as shown in
Fig. S6 (b). We also did not observe any frequency shift as the fluence changes.



8

I. Extraction of T -dependent fitting parameters for the ω1 and ω2 modes

Γj and ωj/2π were obtained by fitting the experimental data using formula: Aωj
e−Γjtsin(ωjt+φj) (j = 1, 2). The

oscillation data of ω2 mode were first extracted using a 0.2-0.9 THz frequency filter to the original oscillatory signals.
Typical fitting examples are shown in Fig. S7. The fitted amplitude Aω1

and Aω2
are also shown in Figs. S8(a) and

(b). As shown in Fig. S8(c), in the decay process characterized by τs, no clear anomaly was observed near Tω1

C ('54 K)
in the temperature-dependent amplitude, As(T ), which, together with τs(T ), further confirm that ω1 mode can be
ignored in discussing the potential bosons involved in the scattering process.
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FIG. S8. (a) and (b) are fitted amplitudes for ω1 and ω2 modes as a function of temperature, respectively. (c) The fitted
amplitude for τs relaxation process as a function of temperature.

J. Calculations of the phonon spectra and electron-phonon couplings in ZrTe5

1. The Phonon spectra in STI and WTI phases

We calculated the phonon spectra of ZrTe5 in the strong topological insulator (STI) phase and weak topological
insulator (WTI) phase. The structure of WTI phase was obtained by the fully relaxed lattice which has larger
interplane distance, whereas the structure of STI phase was taken from experiments [20, 21], which only have relaxation
of the atom position but have no unit cell volume relexation. The phonon spectrum was calculated using the Quantum
Espresso package [22, 23] via the density functional perturbation theory (DFPT) method [24]. In all the calculations,
we used the GGA-PBE functional and norm-conserving potential [25]. We set the plane wave energy cutoff as 90 Ry
and a 5× 5× 3k-mesh. The spin-orbit coupling (SOC) was also considered in the calculations. The phonon spectra
of both STI and WTI phases are shown in Fig. S9. In both cases, the lowest optical mode (with B1g representation
which has Raman activity) at Γ point is near 1 THz, which can be seen in Table II and III.
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(a) (b)

FIG. S9. The phonon spectra of (a) STI phase and (b) WTI phase. The lowest optical phonon mode (B1g representation with
Raman activity) at Γ point is near 1 THz.

.
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TABLE II. The phonon frequency, representation, and active index (R or I) at Γ point for the STI phase. R and I represent
the Raman and Infrared active modes, respectively. In our experiment, five Raman active modes were observed. According
to Refs.[7, 8], three frequencies of ∼1.2 THz, ∼3.7 THz, ∼4.6 THz are attributed to the Ag phonon modes. The other two
frequencies of ∼2.2 THz and ∼2.6 THz arise from the B2g modes.

# mode Frequency (THz) Representation Active Index

1 -0.0000 B3u I

2 -0.0000 B2u I

3 0.0000 B1u I

4 1.0275 B1g R

5 1.2118 B1u I

6 1.4118 Ag R

7 1.5267 B2g R

8 1.5483 B2u I

9 1.5785 Au

10 2.0904 B1u I

11 2.2638 B3u I

12 2.3485 B2g R

13 2.4509 B3g R

14 2.5515 B1u I

15 2.5762 Au

16 2.6816 B2u I

17 2.8736 B1g R

18 2.8967 B3g R

19 2.9104 B2g R

20 3.2520 B3u I

21 3.3763 B1u I

22 3.4184 Ag R

23 3.4864 B2g R

24 3.4914 Ag R

25 3.4996 B3u I

26 3.6566 B1g R

27 4.3111 Ag R

28 4.9099 B2g R

29 4.9485 Ag R

30 5.2246 B3u I

31 5.4057 B1g R

32 5.4537 B2u I

33 6.2225 B2g R

34 6.3514 B1u I

35 6.8057 B3u I

36 6.8519 Ag R
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TABLE III. The phonon frequency, representation, and active index (R or I) at Γ point for the WTI phase. R and I represent
the Raman and Infrared active modes, respectively. In our experiment, five Raman active modes were observed. According
to Refs.[7, 8], three frequencies of ∼1.2 THz, ∼3.7 THz, ∼4.6 THz are attributed to the Ag phonon modes. The other two
frequencies of ∼2.2 THz and ∼2.6 THz arise from the B2g modes.

# mode Frequency (THz) Representation Active Index

1 -0.0000 B3u I

2 -0.0000 B2u I

3 0.0000 B1u I

4 1.0842 B1g R

5 1.1749 B1u I

6 1.3171 Ag R

7 1.3739 B2g R

8 1.5459 B2u I

9 1.5993 Au

10 1.9792 B1u I

11 2.1081 B3u I

12 2.1994 B2g R

13 2.2954 B3g R

14 2.3647 B1u I

15 2.4690 B2u I

16 2.5205 Au

17 2.7589 B3g R

18 2.7638 B1g R

19 2.8746 B2g R

20 3.0544 B3u I

21 3.1805 Ag R

22 3.1929 B3u I

23 3.2260 B1u I

24 3.4584 B2g R

25 3.4855 Ag R

26 3.5860 B1g R

27 4.1682 Ag R

28 4.6901 B2g R

29 5.1528 Ag R

30 5.1669 B1g R

31 5.2276 B2u I

32 5.2424 B3u I

33 5.9912 B2g R

34 6.1136 B1u I

35 6.6459 B3u I

36 6.7167 Ag R

2. Calculations of the electron-phonon couplings

We also performed the calculation of the electron-phonon coupling to investigate the possible charge density wave
(CDW) phase of ZrTe5 using the EPW package [26, 27]. We choose the double-delta approximation to calculate
the phonon linewidth. To get a converged result with increasing the density of k-mesh, we choose a 110 × 110 × 55
fine k-mesh for STI phase and a 150 × 150 × 75 k-mesh for WTI phase. Because the ordinary electronic state in
DFT calculation is an insulator, we increased the Fermi level to get electron-type carriers with three kinds of carrier
density as 4.97×1019 cm−3, 2.27×1020 cm−3, and 7.25×1020 cm−3. The corresponding phonon linewidth of acoustic
modes (the three lowest frequency phonon modes) are shown in Fig. S10. According to the phonon linewidth, we can
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FIG. S10. The phonon linewidth of three acoustic modes (the three lowest frequency modes) corresponding to the carrier
density of 4.97×1019 cm−3 [ Fig. S10 (a) for STI phase, (d) for WTI phase ], 2.27×1020 cm−3 [ Fig. S10 (b) for STI phase, (e)
for WTI phase] and 7.25 × 1020 cm−3 [ Fig. S10 (c) for STI phase, (f) for WTI phase]. The convention of the high-symmetry
points’ label is the same as [28].

conclude that for both of the STI phase and WTI phase, the electron-phonon coupling in the inter-plane direction
(Γ-Z direction) is stronger than those in the other directions. So the CDW phase can be mostly possible along the
inter-plane direction (b-axis).
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