Online Resource 1

Article Title: Glioma Growth Modeling based on the Effect of Vital Nutrients and Metabolic Products

Journal Name: Medical & Biological Engineering & Computing

Author Names: Maria Papadogiorgaki, Panagiotis Koliou and Michalis E. Zervakis Corresponding author: Maria Papadogiorgaki

Affiliation: Digital Image and Signal Processing Laboratory, Electronic and Computer Engineering Department, Technical University of Crete

E-mail Address: <u>mpapadogiorgaki@isc.tuc.gr</u>

Online Resource 1 contains the supplementary mathematical formulas, which also have been used in the proposed model. It also includes a multi-page table where the parameter values used for the model simulations are listed.

Additional Mathematical Equations

- Relative oxygen concentration coefficient: $O = 1 (b_h + a_n) \cdot n_h$
- · Coefficient related to the critical oxygen concentration for the proliferative cells to turn to

hypoxic
$$\begin{cases} n_h = 0, o(l, t) > 0 \\ n_h = 1, o(l, t) \le 0 \end{cases}$$

- Conversion rate of proliferative cells to hypoxic: $b_h = (1 \frac{O_{tmp}(l,t)}{O_0}) / 20$
- Relative glucose concentration coefficient: $Gl = 1 (b_q + a_n) \cdot gl_q$
- · Coefficient related to the critical glucose concentration for the proliferative cells to turn to

$$\begin{cases} gl_q = 0, gl(l,t) > 0 \\ gl_q = 1, gl(l,t) \le 0 \end{cases}$$

- Conversion rate of proliferative cells to hypoglycemic: $b_q = (1 \frac{gl_{tmp}(l,t)}{gl_0})/20$
- Relative lactate concentration: $La = \frac{la(l,t) la_0}{la(l,t)}$
- Relative H⁺ concentration: $H_{ions} = \frac{h(l,t) h_0}{h(l,t)}$
- Coefficient related to the pH threshold that determines the beginning of the proliferation rate decrease: $pH_{pr} = pH_{valPr} - (-\log(h(l,t)\cdot 10^6))$ and $\begin{cases} pH_{pr} > 0 \Rightarrow pH_{pr} = 1 \\ pH_{pr} < 0, pH_{pr} = 0 \end{cases}$
- Coefficient related to the pH threshold for the proliferative cells to turn to quiescent (stop proliferating): $pH_q = -\log(h(l,t) \cdot 10^6 - pH_{valQ})$ and $\begin{cases} pH_q > 0 \Longrightarrow pH_q = 1 \\ pH_a < 0, pH_a = 0 \end{cases}$
- Coefficient related to the pH threshold for the acidic cells to turn to necrotic:

$$pH_n = -\log(h(l,t) \cdot 10^6 - pH_{valN} \text{ and } \begin{cases} pH_n > 0 \Longrightarrow pH_n = 1\\ pH_n < 0, pH_n = 0 \end{cases}$$

• Conversion rate of proliferative to acidic cells and acidic to proliferative: $b_a = g_a = 1 - (b_h \cdot n_h + b_q \cdot gl_q + N(l,t) \cdot a_n)$ • Threshold for the hypoxic cells to turn to necrotic due to the absence of oxygen:

$$\begin{cases} \frac{H(l,t)}{H(l,t) + C(l,t) + Q(l,t) + A(l,t)} > 0.9\\ n_h = 1 \end{cases} \Rightarrow n_{hn} = 1 \end{cases}$$

• Threshold for the hypoxic cells to turn to necrotic due to the absence of glucose: $\binom{n_h = 1}{n_h}$

$$\begin{cases} gl_q = 1 \end{cases} \Rightarrow gl_{hn} = 1$$

• Threshold for the hypoglycemic cells to turn to necrotic due to the absence of glucose:

$$\begin{cases} \frac{Q(l,t)}{H(l,t) + C(l,t) + Q(l,t) + A(l,t)} > 0.75\\ gl_q = 1 \end{cases} \Rightarrow gl_{qn} = 1 \end{cases}$$

• Threshold for the hypoglycemic cells to turn to necrotic due to the absence of oxygen:

$$\begin{cases} n_h = 1 \\ gl_q = 1 \end{cases} \Longrightarrow n_{qn} = 1$$

• Concentration change of hypoglycemic cells:

$$\frac{\partial Q(l,t)}{\partial t} = \nabla \cdot (D_{ql}(l,t) \cdot (1-T) \nabla Q(l,t)) + (C(l,t) \cdot b_q \cdot gl_q + A(l,t) \cdot b_q \cdot gl_q - Q(l,t) \cdot g_q \cdot (1-gl_q)) - Q(l,t) \cdot a_q \cdot n_{qn} - Q(l,t) \cdot a_{glq} \cdot gl_{qn} - Q(l,t) \cdot N(l,t) \cdot a_n) \cdot pH_n - Q(l,t) \cdot (1-pH_n)$$

• Concentration change of glucose:

$$\begin{aligned} \frac{\partial gl(l,t)}{\partial t} &= D_{gl} \nabla^2 gl(l,t) + \beta_{gl} \cdot e(l,t) - (\gamma_{cgl1} \cdot (1-n_h) + \gamma_{cgl1} \cdot n_h) \cdot C(l,t) \\ &- \gamma_{hgl} \cdot H(l,t) - \gamma_{qgl} \cdot Q(l,t) - \gamma_{agl} \cdot A(l,t) - \varepsilon_{gl} \cdot gl(l,t) \end{aligned}$$

Table 1 - Parameter Values

Parameters	Symbols	Values	Units
Tissue maximum carrying capacity	C _m	$2.39*10^5$	cells/mm ³
Initial spherical tumor cell density	C ₀	3*10 ⁴	cells/mm ³
Initial real tumor cell density	C _{0r}	$5*10^4$	cells/mm ³
Initial spherical tumor cell density for model validation	C_{0v}	10 ⁵	cells/mm ³
Initial spherical tumor radius	r ₀	1	mm
Initial Diffusion coefficient of proliferative cells	$D_c = D_w$	0.005, 0.3	mm²/day
Initial Diffusion coefficient of hypoxic cells	D _h	D _c *10	mm²/day
Initial Diffusion coefficient of hypoglycemic cells	D_q	D _c	mm²/day
Initial Diffusion coefficient of acidic cells	D _a	D _c	mm²/day
Low and high cell-diffusion coefficients for model validation (spherical tumor)	D _{cv}	0.01, 0.06	mm²/day
Cell-diffusion coefficient for model validation (real tumor)	$\mathbf{D}_{\mathrm{cvr}}$	0.01	mm²/day
Proliferation rate constant	ρ	0.0025, 0.04	1/day
Low and high cell-proliferation rates for model validation (spherical tumor)	$ ho_v$	0.013, 0.033	1/day
Cell-proliferation rate for model validation (real tumor)	$ ho_{vr}$	0.005	1/day
Initial ECM concentration outside the tumor	f_0	10 ⁻⁹	mol/mm ³
Initial intratumoral ECM concentration	\mathbf{f}_{0tumor}	$0.9*10^{-9}$	mol/mm ³
Initial MDEs concentration outside the tumor	m ₀	0	mol/mm ³
Initial intratumoral MDEs concentration	m _{0tumor}	0.5*C ₀	mol/mm ³
Initial oxygen concentration outside the tumor	O ₀	0.28*10 ⁻⁹	mol/mm ³
Initial intratumoral oxygen concentration (spherical geometry)	O _{0tumor}	o ₀ *e ^{-dr}	mol/mm ³
Initial intratumoral oxygen concentration (real geometry)	O _{0tumor}	0.5* o ₀	mol/mm ³
Initial glucose concentration outside the	gl ₀	16.5*10 ⁻⁹	mol/mm ³

tumor			
Initial intratumoral glucose concentration	gl_{0tumor}	$gl_0 * e^{-d(r)}$	mol/mm ³
(spherical geometry)			
Initial intratumoral glucose concentration	~1	0.5*~1	mol/mm ³
(real geometry)	g1 _{0tumor}	$0.5 \cdot g_{10}$	
Initial lactate concentration outside the	1.	10-10	mol/mm ³
tumor	1a ₀	10	
Initial intratumoral lactate concentration	la _{0tumor}	$10*la_0$	mol/mm ³
Initial H ⁺ concentration outside the tumor	1.	3.98*10 ⁻¹⁴	mol/mm ³
(Extra-tumoral pH=7.4)	Π_0		
Initial intratumoral H ⁺ concentration	h	7.94*10 ⁻¹⁴	mol/mm ³
(Intratumoral pH=7.1)	h _{Otumor}		
Reduced proliferation rate pH value	pH_{valPr}	6.8	-
Quiescent acidic pH value	pH_{valQ}	6.4	-
Necrotic pH value	$\mathrm{pH}_{\mathrm{valN}}$	6	-
Diffusion coefficient of MDEs	D _m	0.00864	mm²/day
Diffusion coefficient of oxygen	Do	157.248	mm²/day
Diffusion coefficient of glucose	D_{gl}	9.504	mm²/day
Diffusion coefficient of lactate	D _{la}	15.379	mm²/day
Diffusion coefficient of H^+	D_{ph}	155.52	mm²/day
Oxygen natural decay rate	ε _o	0.0375	1/day
Oxygen production rate	β_{o}	0.5025	1/day
Glucose natural decay rate	α_{gl}	0.11	1/day
Glucose production rate	β_{gl}	1.1	1/day
Lactate excretion rate	ε _{la}	0.8	1/day
H ⁺ excretion rate	$\epsilon_{\rm ph}$	2592	1/day
Oxygen consumption rate by proliferative			
cells under normoxic conditions (60%	γ_{co1}	5.52 *10 ⁻¹²	mol/cell*day
glycolysis)			
Oxygen consumption rate by proliferative			
cells under hypoxic conditions (75%	γ_{co2}	5.175*10 ⁻¹²	mol/cell*day
glycolysis)			
Oxygen consumption rate by hypoxic cells		6.9 *10 ⁻¹³	mol/cell*day
(99% glycolysis)	$\gamma_{ m ho}$		
Oxygen consumption rate by hypoglycemic	$\gamma_{ m qo1}$	0.8125* γ _{cn1}	mol/cell*day
cells under normoxic conditions (60%			

glycolysis)			
Oxygen consumption rate by hypoglycemic			
cells under hypoxic conditions (60%	γ_{qo2}	$0.5^* \gamma_{cn1}$	mol/cell*day
glycolysis)			
Oxygen consumption rate by acidic cells	~	3 45*10 ⁻¹²	mol/cell*day
(50% glycolysis)	l ao	5.45 10	mon/cen uay
Glucose consumption rate by proliferative			
cells under normoxic conditions (60%	γ_{cgl1}	$2.3*10^{-12}$	mol/cell*day
glycolysis)			
Glucose consumption rate by proliferative			
cells under hypoxic conditions (75%	Ycgl2	$0.5^* \gamma_{cgl1}$	mol/cell*day
glycolysis)			
Glucose consumption rate by hypoxic cells	$\gamma_{ m hgl}$	1.15*10 ⁻¹¹	mol/cell*day
Glucose consumption rate by hypoglycemic	24.5	$0.5^* \gamma_{cgl1}$	mol/cell*day
cells	∤ qgl		
Glucose consumption rate by acidic cells	$\gamma_{ m agl}$	$0.5^* \gamma_{cgl1}$	mol/cell*day
Lactate consumption rate by proliferative	γ,	0.5* 2	mol/cell*day
cells under hypoxic conditions	l cia		
Lactate consumption rate by hypoglycemic	γ.	$0.25^* \gamma_{cgl1}$	mol/cell*day
cells under normoxic conditions	7 qia		
Lactate production rate by proliferative cells	ß	1.2* γ _{cgl1}	mol/cell*day
under normoxic conditions (60% glycolysis)	Pelal		
Lactate production rate by proliferative cells	ß	0.75* γ _{cgl1}	mol/cell*day
under hypoxic conditions (75% glycolysis)	Pcla2		
Lactate production rate by hypoxic cells	ß ₁₋₁₋	$1.98* \gamma_{hgl}$	mol/cell*day
(75% glycolysis)	Pilla		
Lactate production rate by hypoglycemic	ßala	$1.2^* \gamma_{qgl}$	mol/cell*day
cells (60% glycolysis)	Pqla		
Lactate production rate by acidic cells (50%	Bala	$\gamma_{ m agl}$	mol/cell*day
glycolysis)	Pala		
H^+ production rate by proliferative cells	Bahl	$\beta_{cla1}*10^{-3}$	mol/cell*day
under normoxic conditions (60% glycolysis)	Pch1		
H ⁺ production rate by proliferative cells	β_{ch2}	β_{ch2} $\beta_{cla2}*10^{-3}$	mol/cell*day
under hypoxic conditions (75% glycolysis)			- uuj
H^+ production rate by hypoxic cells (75%)	β_{hh}	$\beta_{hla}*10^{-3}$	mol/cell*day
glycolysis)			

H ⁺ production rate by hypoglycemic cells (60% glycolysis)	β_{qh}	$\beta_{qla}*10^{-3}$	mol/cell*day
H ⁺ production rate by acidic cells (50% glycolysis)	β_{ah}	β_{ala}	mol/cell*day
ECM degradation rate	δ	0.0022388	mm ³ /mol*day
MDEs natural decay rate	λ	0.432	1/day
MDEs production rate by proliferative cells	μ_{c}	0.006	mol/cell*day
MDEs production rate by hypoxic cells	$\mu_{\rm h}$	2*µc	mol/cell*day
MDEs production rate by hypoglycemic cells	μ_q	μ	mol/cell*day
Conversion rate of hypoxic to proliferative or acidic cells	$g_{\rm h}$	0.05	1/day
Conversion rate of hypoxic to necrotic cells due to lack of oxygen	a _h	b _h /10	1/day
Conversion rate of hypoxic to necrotic cells due lack of glucose	a_{glh}	0.01	1/day
Conversion rate of hypoglycemic to proliferative or acidic cells	g_{q}	0.05	1/day
Conversion rate of hypoglycemic to necrotic cells due to lack of oxygen	a _q	0.01	1/day
Conversion rate of hypoglycemic to necrotic cells due lack of glucose	a_{glq}	b _q /10	1/day
Conversion rate of proliferative, hypoxic, hypoglycemic, acidic to necrotic cells due to contact with necrotic region	a _n	$\log(2)/(50C_{\rm m}*10^2)$	mm ³ /day*cells
Time step	dt	0.0005	days
Spatial grid dimensions of spherical tumor	dr	0.2	mm
Spatial grid dimensions of RIDER-NEURO tumor	dx, dy, dz	1, 1, 1	mm
Spatial grid dimensions of clinical real tumor	dx, dy, dz	0.599, 0.599, 0.725	mm