A topology and risk-aware access control framework for cyber-physical space

Yan CAO, Zhiqiu HUANG, Yaoshen YU, Changbo KE, Zihao WANG

Frontiers of Computer Science, DOI: 10.1007/s11704-019-8454-0

Problems & Ideas

- Problems: the interplay between the cyber world and physical world in the cyberphysical space proposes specific security requirements that are not captured by traditional access control frameworks.
 - The interplay between these two worlds proposes four types of security threats, including cyber threats, physical threats, cyber-enabled physical threats, and physical-enabled cyber threats. Hence, the physical security, the cyber security, and the interaction security should be all concerned in the access control model for the cyber-physical space
 - The bad results caused by failure in providing secure policy enforcement may directly affect the controlled physical world.
- Ideas: we propose an effective access control framework for the cyber-physical space.
 - A unified access control model TAAC is proposed. It integrates the physical access control, the cyber access control, and the interaction access control.
 - A more rigorous policy enforcement method is needed to mitigate insider attacks.

Main Contributions

Table 2: Role-permission assignment relation

Num	PA	Risk
p_1	(visitor, enter, staff of fice, $SL(visitor, mainarea) \land (SL(employee, staff of fice)$	
	$\vee SL(manager, staffoffice)))$	20
p_2	(visitor, enter, mainarea, SL(visitor, staffoffice))	-10
p_3	(visitor, login, cloudlet, $SL(visitor, mainarea) \land AL(cloudlet, severroom)$)	30
p_4	(visitor, copy, file3, $SL(visitor, mainarea) \land SA(visitor, cloudlet)$	
	$\land AL(file3, cloudlet) \land AL(cloudlet, serverroom))$	20
p_5	(visitor, delete, file3, $SL(visitor, mainarea) \land AL(file3, visitor[phone])$)	-10
p_6	(visitor, logout, cloudlet, $SL(visitor, mainarea) \land AL(cloudlet, severroom) \land SA(visitor, cloudlet)$)	-20
p_7	(employee, enter, staffoffice, SL(employee, mainarea))	10
p_8	$(employee, login, server, SL(employee, staffoffice) \land AL(server, serverroom))$	20
p_9	$(employee, copy, file1, SL(employee, staffoffice) \land AL(file1, server)$	
	$\land AL(server, serverroom) \land SA(employee, server))$	20
p_{10}	$(employee, delete, file1, SL(employee, staffoffice) \land AL(file1, server) \land AL(server, serverroom))$	20
p_{11}	$(employee, logout, server, SL(employee, staffoffice) \land AL(server, serverroom))$	-10
p_{12}	(employee, enter, mainarea, S L(employee, staff of fice))	-10
p_{13}	(manager, enter, saferoom, S L(manager, staffoffice))	20
p_{14}	$(manager, open, safe, SL(manager, saferoom) \land AL(safe, saferoom))$	10
p_{15}	(manager, enter, staff of fice, S L(manager, saferoom))	-10

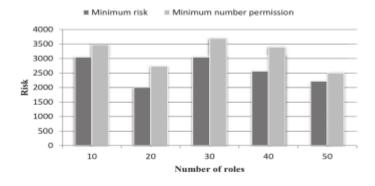


Fig. 5: Comparison of risk exposure for minimum risk method and minimum number permission method.

Table 2 shows that the physical access control, cyber access control, and the interaction access control are unified in the TAAC model.

Figure 5 shows that for preventing insider attacks in the policy enforcement phase, the proposed method in this study is better than providing the role that minimizes the number of extra permissions.