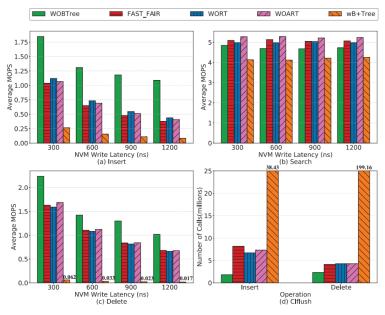

<u>WOBTree: a write-optimized B+-tree</u> <u>for non-volatile memory</u>

Haitao WANG, Zhanhuai LI, Xiao ZHANG, Xiaonan ZHAO, Song JIANG

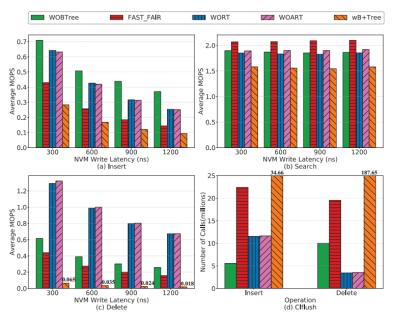
Frontiers of Computer Science, DOI: 10.1007/s11704-020-0228-1

Problems & Ideas

- Problems of B+-tree on non-volatile memory (NVM)
 - Atomic granularity mismatch between CPU cache (usually 64B cache line) and NVM (usually 8 bytes failure-atomicity) can introduce write amplification and compromise data consistency of B+-trees
 - To ensure data consistency, a conventional B+-tree needs to flush half of the whole tree node on average even only one key-value pair is inserted or deleted, which increases write amplification and degrades write performance
- Ideas: A Write-Optimized B+-Tree for Non-Volatile Memory
 - Minimize the update granularity from a tree node to a smaller subnode
 - Carefully arranges the write operations in subnodes to ensure crash consistency and reduce write amplification



Main Contributions


• WOBTree significantly reduce the write amplification

 FAST_FAIR and wB+Tree are two B+-Tree variants on NVM WORT and WOART are two radix tree variants on NVM 	workload	WOBTree	FAST_FAI	R WORT	WOAR	T wB+Tree
	Zipfian Insert	1.46	6.54	5.37	5.85	30.75
	Zipfian Delete	1.85	3.31	3.42	3.42	159.33
	Uniform Insert	4.43	17.92	9.24	9.31	27.72
	Uniform Delete	7.99	15.63	2.76	2.82	150.11

• WOBTree largely improve the write performance (Million Operations Per Second)

Performance comparison under the Zipfian workload.

Performance comparison under the Uniform workload.