WOBTree: a write-optimized B+-tree
for non-volatile memory

Haitao WANG, Zhanhuai LI, Xiao ZHANG,
Xiaonan ZHAO, Song JIANG

Frontiers of Computer Science, DOI: 10.1007/s11704-020-0228-1

http://journal.hep.com.cn/fcs/EN/10.1007/s11704-020-0228-1

Problems & Ideas

* Problems of B+-tree on non-volatile memory (NVM)

— Atomic granularity mismatch between CPU cache (usually 64B cache line)
and NVM (usually 8 bytes failure-atomicity) can introduce write
amplification and compromise data consistency of B+-trees

— To ensure data consistency, a conventional B+-tree needs to flush half of the
whole tree node on average even only one key-value pair is inserted or
deleted, which increases write amplification and degrades write
performance

* |deas: A Write-Optimized B+-Tree for Non-Volatile Memory

— Minimize the update granularity from a tree node to a smaller subnode

— Carefully arranges the write operations in subnodes to ensure crash
consistency and reduce write amplification

align to cache line size
1

. SHead : 8-byte , metadata of the subnode

subnode | SHead | K; | K, [ooo] Kl” lpni] Head : cache line size, metadata of the node

Py P Py SArray
|

|
tree node I Head I subnode, I subnode, [000 | subnode; | 000 | subnode; | 000] subnode,

SLinks

Main Contributions

WOBTree significantly reduce the write amplification

workload WOBTree FAST FAIR WORT WOART wB+Tree
» FAST_FAIR and wB+Tree are two B+-Tree

variants on NVM Zipfian Insert 1.46 6.54 5.37 5.85 30.75
» WORT and WOART are two radix tree Zipfian Delete 1.85 3.31 3.42 3.42 159.33
variants on NVM Uniform Insert 443 17.92 0.24 9.31 27.72
Uniform Delete 7.99 15.63 2.76 2.82 150.11

WOBTree largely improve the write performance (Million Operations Per
Second)

B WOBTree B FAST_FAIR EEN WORT EE WOART =S wB+Tree | EER WOBTree = FAST_FAIR . WORT E=8 WOART = wB+Tree
0.7
175 5 2.0
0.6
1.50 4
@0 0 {05 {15
&1.25] 2 £
= = 04 =
3 @ Y o
©1.00 @ 3 [
2 2 @ & L0
© o 50.3 @
g0.75 g, z o
z z ks k4
0.50 0.2 0.5
1
0.25 0.1
0.0 0.0
0.00 300 600 900 1200 0 300 600 900 1200 300 500 900 1200 300 600 900 1200
NVM Write Latency (ns) NVM Write Latency (ns) NVM Write Latency (ns) NVM Write Latency (ns)
(a) Insert (b) Search (a) Insert (b) Search
25 38.43 199.16 25 34.66 187.65
G IE
22 5%
E E
515 515
3§ g
510 B 10
e e
2 3
c :
E 35
0.0 0 . 0
300 600 900 1200 Insert Delete 600 900 Insert Delete
NVM Write Latency (ns) Operation NVM Write Latency (ns) Operation
(c) Delete (d) Clflush (c) Delete (d} Clflush

Performance comparison under the Zipfian workload. Performance comparison under the Uniform workload.

