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Abstract Recently, community search over 

Heterogeneous Information Networks (HINs) has 

attracted much attention in graph analysis, which aims 

to search for local communities containing query node. 

Although existing community search studies in HINs 

have proved effective in converting· heterogeneous 

graphs to homogeneous graphs via pre-defined 

meta-paths with consistent head and tail node types, two 

major limitations still exist. First, they fail to properly 

utilize the intermediate nodes to assign weights on the 

edges of the induced homogeneous graph, which is 

crucial for capturing rich semantics in the meta-path. 

Secondly, the query node plays an important role in 

mining local subgraphs related to user’s interests in 

heterogeneous information networks. Existing methods 

perform well when a query node comes from the core 

region of the target community. However, they struggle 

with the query-bias issue and especially perform 

unsatisfactorily if the query node stands at the boundary 

region. To tackle these two limitations, we propose a 

novel Community Search via weighted strategy and 

Query Replacement over HINs model (CSQR), which 

models the intermediate node of the meta-path to get the 

better induced homogeneous graph, and replaces the 

original ‘intractable’ query node with new 

search-friendly query node. Specifically, we devise a 

new weighting assignment strategy for induced 

homogeneous graph, which can make reasonable use of 

intermediate nodes and assign weights in the induced 

homogeneous graph to reflect the semantic relationships 

between nodes. Then, we establish a new query node 

replacement strategy in the induced homogenous graph 

for local community detection. The original query node 

is replaced with the node that is closer to the query node 

and has a higher clustering tendency. Extensive 

experiments on three real datasets demonstrate the 

effectiveness of our proposed method. 

Keywords  Community search, Weighted strategy,  

Query replacement, Heterogeneous information 

networks 

 

 

1  Introduction 

 

Graphs (or networks) are prevalent in real-life 

applications for modeling structured data such as social 

graphs [1], document citation graphs [2], and neurobiol- 

ogical graphs [3]. Currently, network analysis mainly 

focuses on homogeneous information networks with 

same type of nodes and link relationships. For example, 

the collaboration network in Fig.2(a) is a classical 

homogeneous network in which nodes stand for authors 

and edges indicate collaborative relationships between 

authors. However, with the development of the network, 

the types of nodes and edges become more diversified. 

A single type of homogeneous network can no longer 

meet the needs of researchers to explore the information 

network, so Heterogeneous Information Network (HINs) 

arises at the right moment. Compared with 

homogeneous networks, HINs can effectively model and 

process complex and diverse data based on 

comprehensive structural information and rich semantic 

information. Therefore, it is significant for the analysis 

of heterogeneous information networks. 



 

 

HINs are prevalent in various domains, including 

bibliographic information networks, social media, and 

knowledge graphs. Fig.1 illustrates an HIN of the DBLP 

network, which describes the relationship among 

entities of different types (i.e., author, paper, venue, and 

topic). In specific, it consists of five authors (i.e., a1, ···, 

a5), five papers (i.e., p1, …, p5), two venues (i.e., v1 and 

v2), and two topics (i.e., t1 and t2). The directed lines 

denote their semantic relationship. For example, the 

authors a1 and a2 have written the paper p1, which 

mentions the topic t1, published in the venue v1. 
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Fig.1: An illustrative example of a heterogeneous 

graph (DBLP). (a) Four types of nodes (i.e., author, 

paper, venue, topic). (b) A heterogeneous graph 

DBLP consists four types of nodes and three types of 

connections. (c) Two meta-paths involved in DBLP 

(i.e., Author-Paper-Author and Author-Paper-Topic- 

Paper-Author). (d) Author a1 and its meta-path 

based neighbors (i.e., a2, a3 and a4). 

As a fundamental problem in network analysis, 

community search is widely used to find local 

community containing query node [4]. Different from 

community detection, community search pays more 

attention to local structure and user’s personalized 

demand. Since the heterogeneous network has multiple 

types of objects and relationships and contains rich 

structure and semantic information, thus it has some 

nice features for community search on heterogeneous 

networks. For example, (1) it can find different types of 

communities, such as author communities, as well as 

venues, by using different meta-paths. (2) the query can 

be personalized, and different meta-paths indicate 

different relationships. By specifying different 

meta-paths for individual query vertices, we can obtain 

communities with different semantic relationships [5]. 

Despite the aforementioned advantages, community 

search in HINs remains a challenging task. Since HINs 

are networks with multiple typed objects and multiple 

typed links denoting different semantic relations, 

traditional community search methods cannot be 

directly applied to HINs. Moreover, the current methods 

for community search on HINs tend to convert HINs 

into homogeneous networks via defining meta-paths 

with consistent head and tail node type, and then a 

community search on homogeneous network is 

performed. But there are two limitations to this process. 

Firstly, given a meta-path, the HINs are mapped to the 

corresponding homogeneous information network by 

matrix multiplication. However, it is generally 

unreasonable to assign the edge weight of the 

homogeneous information network. For example, given 

the HINs in Fig.1(b) and the meta-path P =APA, taking 

a2 as an example, the homogeneous network that can be 

obtained is shown in Fig.2(b), where the normalized 

cooperation frequency between two authors is used to 

describe the strength of the relationship between them. 

From the perspective of contribution to the paper, this 

kind of weight assignment is illogical. It is clear that a1 

contributes more to all papers of a2 than a3, so the 

strength of the relationship between a1 and a2 should be 

stronger than that between a3 and a2, which is not 

revealed in Fig.2(b). Secondly，the query node play 

essential roles in the community search effectiveness. 

Existing local community detection methods, such as 

the Random Walk with Restart (RWR)[6], perform well 

when the query node stand at the core region of the 

community. However, query-bias remains a vital issue 

[7]-[9]. Query-bias demonstrates that when a query node 

stands of the boundary region of the target community 

(i.e., the query node has connections with nodes outside 

its target communities), the detected community may 

miss some nodes that should belong to the target 

community or even include some nodes which may 

locate other community. Fig.2(c) gives the community 

search results for different query node with RWR. The 

red node is the query node and the nodes in the dashed 

boxes consist of communities. It can be seen that the 

nodes located at the core region of the community are 

able to obtain closely structured communities, while the 

boundary nodes influence the community search results 

because of their own properties. 
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Fig.2: An illustrative example of an induced 

homogeneous graph and query-bias issue. (a) An 

induced homogeneous graph of Fig.1(b). (b) 

Traditional weight assignment strategy for v2. (c) 

Local community detection results (with RWR) for 

different query node of a toy network. 

To tackle the above challenges, in this work, we first 

propose a novel weighting assignment strategy on 

induced homogeneous graph, which makes reasonable 

use of intermediate nodes of meta-paths to model the 

relationship between two adjacent nodes in a meta-path 

instance, while combining the information of all 

meta-path instances under a given meta-path to capture 

richer semantic information. In addition, the information 

of a single meta-path may not provide a complete 

description of the whole network. In view of this, we 

fuse the information of multiple meta-paths so that the 

information between the meta-paths can complement 

each other. Secondly, to solve the query bias problem, 

we propose a new approach to detect the core nodes of 

the target community. The key idea is to find the node 

that is Close to the query node and have a high Local 

Clustering Coefficient around the query node (CLCC). 

For a query node, the node that is structurally close to 

the query node is obtained by using RWR, while its 

local clustering coefficients are examined in order to 

find the core nodes of the target community. 

The contributions of this paper are summarized as 

follows: 

● We propose a new weighting strategy to capture the 

rich semantic information in a meta-path by 

properly modeling the intermediate nodes of the 

meta path and integrating the information of 

multiple meta paths; 

● We introduce a query node replacement strategy 

using CCLC score to avoid query bias in local 

community detection; 

● We perform comprehensive experiments on three 

real-world networks to demonstrates the effective- 

ness of our proposed method. 

The rest of our paper is organized as follows. Section 

2 gives a brief review of related works on community 

search. Section 3 describes some preliminaries such as 

relatively problem definitions. Based on this, we give a 

detailed description about our method in Section 4. Then, 

we introduce the datasets, experimental settings and 

discuss the effectiveness of proposing algorithm in 

Section 5. Finally, we conclude this work and suggest 

future research directions in Section 6. 

 

2 Related Works 

 

Community can be loosely defined as the subsets of 

nodes which are more densely linked than the rest of the 

network. With the prevalence of networked systems, 

network analysis has been widely applied in practice. In 

this section, we introduce the most related two research 

topics community search on homogeneous graph and 

heterogeneous graph. 

 

2.1 Community search in homogeneous graph 

 

Community search has been studied extensively on 

homogeneous graph, which aims to find a connected 

subgraph for a network given a set of sample nodes. 

Existing methods can be roughly divided into two 

categories: based on cohesiveness metrics [10], [11], [12] 

and based on random walk theory [6], [13]. We briefly  

review two kinds of methods separately. Firstly, to 

measure the structure cohesiveness of a community，

diverse community models have been proposed，For 

example, Sozio et al [10] develop an optimum greedy 

algorithm based on minimum degree and distance 

constraints. Moreover, Huang et al [11] study 

community search using the k-truss and formulate their 

problem as finding a Closest Truss Community (CTC). 

CTC aims to search a connected k-truss subgraph with 

the largest k that contains sample nodes. The pre-defined 

subgraph pattern imposes a very rigid requirement on 

the topological structure of community, which may not 



 

 

perfectly hold in real-world community. Secondly, 

random walk-based algorithms are widely used because 

of their ability to find communities that are closely 

connected to the query node. For example, Tong et al. 

proposed the RWR[6], which improves the traditional 

random walk algorithm by obtaining an importance 

ranking vector against other nodes of the query node, 

and the vector can largely improve the quality of 

community search results. Andersen et al. proposed a 

PageRank-Nibble[13] algorithm and demonstrated the 

feasibility of conductance in community search. A 

comprehensive survey of community search models and 

existing approaches can be found in [4,9]. However, all 

these works focus on homogeneous graph, and it is not 

clear how to adapt them for community search over 

HINs. 

 

2.2 Community search in heterogeneous graph 

 

Heterogeneous information networks have many new 

characteristics, such as different types of objects and 

relationships. Meanwhile, HINs contain rich semantic 

information that can be captured by meta-paths. These 

new characteristics bring many new challenges to the 

task of community search on heterogeneous information 

networks. Nevertheless, some related works on commu- 

nity search in HINs have emerged in recent years. 

Jian[14] propose the relational community which is 

defined upon relational constraints. Using these 

constraints, the user can specify fine-grained 

requirements on vertex degrees. Fang[5] et al. use the 

well-known concept of meta-paths to model the 

relationship between two vertices of the same type, then 

measure the cohesiveness of the community by 

extending the classic minimum degree metric with a 

meta-path. The difference between the above two 

approaches is that the former finds communities that 

contain multiple types of nodes, while the latter aims to 

generate communities with nodes of the same type as 

the query node. Our work is more related to the latter as 

we find communities where vertices are of the same 

type. The main difference between this method and our 

method is that it performs community search based on 

the cohesion metric, which is inflexible and always too 

loose or too tight for the topology of the community. 

 

3  Preliminaries 

 

In this section, we give formal definitions of some 

important terminologies related to HINs. Graphical 

illustrations are provided in Fig.1. Besides, Table 1 

summarizes frequently used notations in this paper for 

quick reference. 

Definition 1 Heterogeneous Information Network. 

A heterogeneous information network is defined as 

graph ( , )G V E= ,where V  and E  represent the node 

set and the link set, respectively. In a HIN, each node v 

and edge e are associated with their type mapping 

functions ( ) :v V →A  and ( ) :e E →R . A  and 

R  denote the sets of predefined node types and link 

types, respectively, where | |+| |>2A R . 

Example. As shown in Fig.1(b), we construct a 

heterogeneous graph to model the DBLP. It consists of 

multiple types of node (author, paper, venue, and topic) 

and relations. The directed lines denote their semantic 

relationship. For example, the authors a1 and a2 have 

written a paper p1, which mentions the topic t1, 

published in the venue v1. 

In heterogeneous graph, two nodes can be connected 

via different semantic paths, which are called meta-path. 

Definition 2 Meta-path. A meta-pathP is defined as 

a path in the form of 
1 2

1 2 1

lRR R

lA A A +→ →→  (abbreviated 

as 1 2 1lA A A +   ), which describes a composite relation 

1 2 lR R R R=   between objects 1A  and 1lA + , 

where ◦ denotes the composition operator on relations. 

Example. As shown in Fig.1(c), two authors can be 

connected via multiple meta-paths, e.g., Author-Pap- 

er-Author(APA) and Author-Paper-Topic-Paper-Author 

(APTPA). Different meta-paths always reveal different 

semantics. For example, the APA indicates the co-author 

relationship, while Author-Paper-Topic-Paper-Author 

Table 1 Main symbols and their definitions 

Symbol Definition 

P  Meta-path 

NP
 Meta-path based neighbors 



 

 

( , )h tp v v  A metapath instance connecting node vh and vt 

di the degree of node vi 

P transition matrix 

K sliding window length 

m(t) score vector of vq at time point t 

v (t) visiting history vector at time point t 

e(t) vector for key positions at time point t 

C community 

(APTPA) represents the co-topic relation. 

Definition 3 Meta-path Instance. Given a meta- 

pathP of a heterogeneous graph, a meta-path instance p 

of P  is defined as a node sequence in the graph 

following the schema defined byP .  

Example. Considering the meta-path APTPA in Fig.1, 

nodes a1 and a3 are connected via the meta-path instance 

a1-p1-t1-p2-a3. Moreover, we may refer to p1, t1 and p2 as 

the intermediate nodes along this meta-path instance. 

Definition 4 Meta-path based Neighbors. Given a 

node i and a meta-path P  in a heterogeneous graph, 

the meta-path based neighbors
iNP of node i are defined 

as the set of nodes which connect with node i via 

meta-pathP . Note that the node’s neighbors do not 

include itself. 

Example. Taking Fig.1(d) as an example, given the 

meta-path APA, the meta-path based neighbors of a1 

includes a2, a3 and a4. Similarly, the neighbors of a1 

based on meta-path APTPA includes a2, a3, a4 and a5. 

Obviously, meta-path based neighbors can exploit 

different aspects of structure information in 

heterogeneous graph. We can get meta-path based 

neighbors by the multiplication of a sequences of 

adjacency matrices. 

 

4  Methodology 

 

In this section, we introduce the proposed CSQR model 

which is composed of three major components:(1) The 

induced homogeneous graph by meta-path; (2) Query 

node replacement; and (3) Local clustering by 

conductance.  

 

4.1 The induced weighted homogeneous graph 

 

In this paper, we focus on searching community in HINs, 

in which nodes are with a specific type (e.g., a 

community of authors in the DBLP network). Although 

HINs contain multiple types of nodes and relationships, 

there may be no connection between nodes of the same 

type. In order to connect two nodes of the same type, we 

adopt the well-known concept of meta-path, or a 

sequence of relations defining a composite relation 

between its starting type and ending type. At the same 

time, the edge weight between the head and the end 

nodes of the meta-path is deliberately calculated by 

considering the intermediate nodes of the meta-path. 

Specifically，Given a HIN and a meta-path 

1 2

1 2 1=
lRR R

lA A A +→ →→P ，the probability between any two 

adjacent nodes under the meta-pathP is formalized as 

follows: 

1

+1
t+1

0

( , ) , ,
| ( ) |( , | )

( , )

v v E v A v Ai j i t j t
N vProb v v ii j

v v Ei j

  
=








P (1) 

where 
t+1( )iN v  denotes the At+1 type of neighborhood 

of node
iv . The pattern of the meta-path is repetitively 

followed until it reaches the pre-defined length. 

Let ( , )h tp v v  be a meta-path instance of the 

meta-path P from the head node hv to the tail 

node
ht vv N P . ( ( , ))h tProb p v v represents the probability 

of connecting edges between node hv  and node tv  

based on this meta-path instance, we have 

, ( , )
( ( , )) ( , | )

i j h t

h t i j
v v p v v

Prob p v v Prob v v


=  P      (2) 

( ( , ))h tProb p v v contains information about the 

intermediate nodes of the meta-path, which reflects the 

weights between nodes hv  and tv  in the induced 

homogeneous graph. 

Since there are multiple meta-path instances of a 

given meta-path, the probability of a connection 

between node hv  and node tv  is the sum of the 

probabilities of all meta-path instances of meta-path P  



 

 

( , )

( , )

( ( , ))
h t

h t

v v h t

p v v P

Prob Prob p v v


= P         (3) 

where P represents the set of all meta-path instances p 

of meta-path P . 

For example, given node a2 and meta-path P =(APA), 

its induced weighted homogeneous graph is built as 

shown in Fig.3. Fig.3(a) gives all meta-path instances of 

node a2 under the meta-path APA and weighted by the 

method in this paper.  Fig.3(b) shows the connected 

edges of a2 in the induced homogeneous graph. 

Compared with the traditional weighting strategy in 

Fig.2(b), the method in this paper can reasonably 

capture the semantic information among the nodes in 

HIN. 
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Fig.3 An illustrative example of a induced weighted 

homogeneous graph using our method. (a) An 

example of weighted element path of a2 (b) An 

inductive homogeneous graph of a2. 

HINs have a wide variety of node types and links, and 

contain a wealth of semantic information. Different 

meta-paths in a HINs contain different semantic 

information. Therefore, the semantic information 

provided based on a single meta-path may not be able to 

take into account the diversity of information in the 

whole network. Intuitively, we believe that fusing 

multiple meta-paths can make better use of the network 

information. 

Let there be N meta-paths 1 2={ , ,..., }NP P P P in the 

network, and first obtain a weighted homogeneous 

graph 
i

GP  based on each meta-path according to the 

above method, and then integrate the weighted 

homogeneous graphs of different meta-paths to obtain 

the final induced weighted homogeneous graph GP . 

The final connection weights between two nodes in the 

induced weighted homogeneous graph can be obtained 

according to Eq(4) 

1

1
( , )

( , ) i

h t

N

h t v v
i

Prob v v Prob
N =

= 
P

            (4) 

Noted that algorithm 1 gives the process of generating 

a weighted homogeneous graph given a meta-path. 

Since there are multiple meta-paths with different 

semantics in the heterogeneous information network, in 

order to make full use of the semantic information, the 

above algorithm flow is used for each meta-path to 

obtain the corresponding homogeneous graph, and then 

all the homogeneous graphs based on different 

meta-paths are fused using Equation (4) to obtain the 

weighted homogeneous graph that is desired. 

Algorithm 1：The induced weighted homogeneous graph 

Input：A heterogeneous graph ( , )G V E= ,a metapath iP  

Output：The induced weighted homogeneous graph iGP  

1: Collect the set S of nodes with the target type; 

2: for each node v∈S do: 

3:    Initialize a set X={v}; 

4:     for i←1 to length( iP ) do: 

5:         Y←∅; 

6:         for each node u∈X do: 

7:            for each neighbor t of u do: 

8:               if (u,t) matches with i-th edge of P  

9:               then Y.add(t); 

10:              calculate Prob(u,t) based on Equation (1); 

11:         X←Y; 

12:     for each node u∈X do: 

13:         add an edge between v and u; 

14:         calculate u( , )vProbP  based on Equation (3); 

15: return iGP  

 

 

4.2 Query node replacement 

 

In this section, a new query node replacement strategy is 

designed for the query bias problem to find the core 

nodes of the community. Noted that the subsequent 

contents are based on the weighted homogeneous graph 

obtained in section 4.1. 

Intuitively, the core node of the community should 

have the following characteristics :(1) The core node is 

closer to the query node;(2) The core node should have 

a high clustering tendency. Based on above properties, 

we define the CLCC score of a node. The CLCC score 

depict the possibility of the node in the graph becoming 

the core node in the community. A node with the close 

javascript:;
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to the query node and closely connected around has a 

higher CLCC score and is more likely to become a core 

node. 

Specifically, given a node, its CLCC score is shown 

in Equation (5): 

1

2

1

, ( )

| |

( ) m
max ( )

i
jkj k N vi

i i
j V j i i

Ad
CLCC v

d d d



 


=  

−


  (5) 

where ( )iN v is the neighbors set of node iv , and id is 

the degree of iv . mi is the mass of node iv . Traditional 

measures of clustering tendency only take into account 

the closeness of a given node's neighbors and omit the 

effect of the node's own degree, which leads to 

erroneous amplification of the clustering tendency of a 

node with a small degree and closely connected 

neighbors. Therefore, in Equation 5, the degree of the 

node itself is taken into account to address this problem. 

It is observed that node with a large degree and closely 

connected neighbors and close to the query node is more 

likely to be the core node of the community. 

Next, we discuss how to obtain mi . mi  depicts the 

closeness between core node and query node, which is 

obtained through Memory-based Random Walk(MRW) 

[15]. The key to the MRW approach is to use a sliding 

window to memorize the key positions that the walker 

has previously visited and aggregate the entire visiting 

history of the walker. In particular, the next step of the 

walker depends not only on the current visiting 

probability but also its previous visiting history. 

Specifically, in MRW，the visit probability of node t+1 

is defined as： 

( 1) ( ) ( )(1 )m P m v
t t t + = + −          (6) 

where P is the column-normalized probability transfer 

matrix, which can be obtained according to Equation 4, 

v(t) represents the aggregated history of the previous 

steps. 

At time t, the key positions of the walker is defined as 

the node(s) with the largest visiting probability, and 

these key positions are represented by the vector e(t). 

More specifically, suppose that there are n ≥ 1 key 

positions, the entries in e(t) corresponding to the n key 

positions are set to 1/n, and all other entries are 0. 

To record the visiting history, a sliding window of 

length K is used to aggregate these key positions. That 

is: 

( )( ) 1 ( 1) 1 ( 1 )

1

1
1v v e

K
t t t t t k

kK
 − − − + −

=

= − +      (7) 

where 
( 1 )

1

1
e

K
t k

kK

+ −

=

  represents the average of the key 

position vectors in the current time window, i.e., the past 

K steps. v(t)combines the previous visiting history 

(represented by v(t−1)) and the average of key position 

vectors in the current time window with a decay factor. 

Note that, initially, when t<K, e(t−K) is set to be e(0) and 

v(0)= e(0), where e(0) is the same as the vector q in RWR 

which represents the query node q.  

Algorithm 2 gives the process of query node 

replacement. Noted that, we find the core node of the 

community in the third-order neighbors of the query 

node, as suggested on line 16. 

Algorithm 2：Query node replacement strategy 

Input：The induced weighted homogeneous graph 

=( , , )WG V EP P P P ,transition matrix P,query node vq, the time 

window K 

Output：New query node vnew 

1: m(0)=0; m(0)(vq)=1; 

2: Init. uniform values for key posi. in e(0) and v(0) 

3: while no convergence and t<T do: 

4:     m(t+1)=αP┬m(t)+(1-α)v(t); 

5:     compute e(t+1-k) (1≤k≤K); 

6:     update v(t+1) based on equation (7); 

7: end while 

8: obtain the set N(vq) of neighbors of vq by the adjacency matrix  

of GP , vcandidate = vq, iterations = 0, Nall = N(vq); 

9: while true: 

10:     Ntemp= ∅，iterations += 1； 

11:    for all vi ∈Nall do: 

12:       Ntemp=Ntemp∪N(vi) 

13:      if CLCC(vi)>CLCC(vq): 

14:         vcandidate=vi 

15:    end for 

16:    if iterations>3: 

17:      break 

18:    else: 

19:      Nall =Ntemp∪(N(vcandidate)-N(vq)) 

20:      vq= vcandidate 

21: end while 

22: return vcandidate 

 



 

 

 

4.3 Local clustering by conductance 

 

In order to discover local community with better quality, 

we use core node after node replacement to obtain score 

vector by performing a random walk with restart on the 

induced weighted homogeneous graph. For score vector, 

we first find nodes with the top-L largest scores. We set 

the default value of L to be 200 since most communities 

in real-world datasets are not very large [16]. Let {li}(1 

≤ i ≤ L) represent the list of top-L nodes sorted in 

descending order. For each i (1 ≤ i ≤ L), we compute the 

conductance[17] of the subgraph induced by node set 

{l1,...,li}. The node set with the smallest conductance 

will be returned as the target community. Conductance 

measures the cohesiveness of a set of nodes C. The set 

of nodes with the smallest conductance is returned as 

the target community.  

( , )
( )

min{ ( ), ( )}

cut C C
Conductance C

vol C vol C
=      (8) 

where C  is the residual set of 

C,
,

( , ) ( , )
i C j C

cut C C A i j
 

=  , 
,

( ) ( , )
i j C

vol C A i j


=  . 

Conductance measures the cohesiveness of a set of 

nodes, a small conductance(C) indicating that the set C 

is more closely connected internally and more sparsely 

connected externally. 

 

 

5  Experiments 

 

We implement our method in Python, and all the 

experiments are implemented on a computer with a 2.70 

GHz CPU and 32 GB memory. In this section, we guide 

experiments on real-world datasets to evaluate our 

approach via answering the following research 

questions: 

● RQ1: How does our proposed method perform as 

compared with state-of-the-art methods? 

● RQ2: How is the quality of the communities found 

by our method? 

● RQ3: CSQR mainly consists of the induced 

weighted homogeneous graph and query node 

replacement. How much does each component 

contribute? 

 

5.1 Dataset description and evaluation metrics 

 

5.1.1 Dataset description 

 

We adopt three widely used heterogeneous graph 

datasets from different domains to evaluate the 

performance of CSQR as compared to state-of-the-art 

baselines. The detailed descriptions of the 

heterogeneous graph used here are shown in Table 2. 

DBLP1: We extract a subset of DBLP which contains 

14328 papers (P), 4057 authors (A), 20 conferences (C), 

8789 terms (T). The authors are divided into four areas: 

Database, Data mining, Machine learning, Information 

retrieval. Also, we label each author’s research area 

according to the conferences they submitted. Author 

features are the elements of a bag-of-words represented 

of keywords. Here we employ the meta-path set {APA, 

APCPA, APTPA} to perform experiments. 

IMDB2: We extract a subset of IMDB which contains 

4780 movies (M), 5841 actors (A) and 2269 directors 

(D). The movies are divided into three classes (Action, 

Comedy, Drama) according to their genre. Movie 

features correspond to elements of a bag-of-words 

represented of plots. We employ the meta-path set 

{MAM,MDM} to perform experiments. 

Last.fm3: It is a music website keeping track of users’ 

listening information from various sources. We adopt a 

dataset released by HetRec 2011[18], consisting of 1892 

users, 17632 artists, and 1088 artist tags after data 

preprocessing. We employ the meta-path set {UAU, 

UATAU} to perform experiments. 

 

5.1.2 Baselines and evaluation metrics 

 

In order to measure the performance of the methods, the 

following two kinds of methods are selected for 

comparison. First, to compare the contributions of the 

weighting strategy and node replacement strategy 

proposed by the our methods, the following variants of 

the methods are used: CSQR-W indicates that the 

traditional weighting strategy is adopted; CSQR-R 

                                                        
1 https://www.imdb.com/ 
2 https://dblp.uni-trier.de/ 
3 https://www.last.fm/ 



 

 

indicates that the node replacement strategy is omitted; 

and CSQR-WR indicates that neither is considered. 

Second, compared with existing community search 

methods on heterogeneous information networks, the 

Basic-core method proposed by Fang[5] et al. is selected, 

which is the first community search method on 

heterogeneous information networks so far. The 

comparison methods are described in detail as follows. 

Basic-core[5]:The method first obtains the 

homogeneous graph from the HINs, and then obtains the 

community structure by the cohesiveness measure 

k-core. 

CSQR-W: CSQR without using weighting strategy 

based on intermediate node of meta-path. 

Table 2: Statistics of datasets 

Dataset Node Relations Meta-paths Communities 

IMDB 

# Movie(M): 4,278 

# Director(D): 2,081 

# Actor(A): 5,257 

# M-D: 4,278 

 # M-A: 12,828 

 

MDM 

MAM 

 

3 

DBLP 

# Author(A): 4,057 

# Paper(P): 14,328 

# Topic(T): 7,723 

# Venue(V): 20 

# A-P: 19,645 

# P-T: 85,810 

# P-V: 14,328 

APA 

APTPA 

APVPA 
4 

Last.fm 

# User(U): 1,892 

# Artist(A): 17,632 

# Tag(T): 1,088 

# U-A: 92,834 

# A-T: 23,253 

UAU 

UATAU 5 

CSQR-R: Query node replacement strategy of CSQR 

removed. 

CSQR-WR: An extremely simplified version of 

CSQR, which combine the above two variants means 

removing both weighting strategy and query node 

replacement strategy. 

Evaluation metrics. Recall, precision and F1-score 

are three common evaluation criterion for local 

community detection algorithms. The definitions of 

recall, precision and F1-score are as follows: 

F T T| | | |recall C C C=            (9) 

F T F| | | |precision C C C=          (10) 

2
1

precision recall
F score

precision recall

 
− =

+
     (11) 

where CT is the node set in real local community where 

the given node locates; CF is the node set in the detected 

local community. From above, the recall is defined as 

the fraction between the number of common nodes in 

CT∩CF and the number of nodes in CT. The precision is 

defined as the fraction of the number between common 

nodes in CT∩CF and the number of nodes in CF . 

F1-score is the geometric mean of recall and precision. 

The value range of the above three evaluation indexes is 

between 0 and 1, and the larger the value is, the better 

the algorithm performance will be. 

Normalized mutual information NMI, based on 

confusion matrix M, is defined as follows: 
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where Mi,j represents the number of nodes belonging to 

the real community Ci and the detected community Cj, 

Mi. is the row vector constituted by the element in the 

i-th row of matrix N, and Mj. corresponds to the column 

vector constituted by the element in the j-th row of 

matrix M. NMI measures the similarity between the 

detection results and the real results. The higher the 

similarity, the closer the NMI value is to 1. 

Query setting：For each dataset, we collect a set of 

meta-paths reported in Table 2. Note that in line with 

existing works[19,20], we focus on meta-paths with 

lengths at most four. We generate 100 queries for each 

dataset. To generate a query, we randomly select a 

meta-path and then select vertex. The results reported in 

the following, each data point is the average result for 

these 100 queries. When comparing the methods in this 

paper, Basic-core simply follows the best parameter 

settings from the original paper. 



 

 

 

5.2 Performance Comparison (RQ1) 

 

5.2.1 Parameter analysis 

 

In this subsection, to avoid bias due to the different 

setting of parameters used during the random walk, we 

vary parameters of CSQR in each experiment to study 

the effect of parameters on the community search 

performance. 

Our method includes three important parameters: α,β 

and K, where α controls the proportion of historical 

interaction information in the random walk process, β 

controls the ratio between previous visiting history and 

the average of key position vectors in the current time 

window in the process of aggregating historical 

information, K is the size of the current time window. 

In Fig.4 the effect of α is studied. The value of α is 

varied on all datasets to investigate its influence on 

CSQR. The experimental result is shown in Fig.4. We 

can observe that the trend over all data sets is basically 

the same. As α increases, the performance shows a 

decreasing trend. The best performance is reached when 

α is taken as 0.2. Obviously, a smaller α value gives 

better performance. This is also straightforward since a 

smaller α value indicates that visiting history plays a 

more important role in deciding next steps of the walker. 

Although historical interaction information is important 

in deciding the next steps of the walker, information 

about jumps between nodes also needs to be taken into 

account, as this is an intrinsic feature of random walks. 

 

Fig.4  The effects of α 

In Fig.5 the effect of β on our method is shown on all 

datasets. We can observe that when 0.3≤β≤0.6, CSQR 

achieves the best performance. When β≥ 0.8, the 

performance drops. The reason is that when β is large, 

more faraway nodes from the query node will be 

assigned as key positions. The detection results include 

more false positive nodes. It obtains mediate F1-score 

performance when β≤0.4. Because insufficient true key 

positions can be covered. 

 

Fig.5 The effects of β 

Fig.6 shows the effect of different values of K on our 

model for different datasets. We can observe that the 

trend is basically the same in all data sets. With 

increasing K, the F1-score also increases. This is 

consistent with our intuition, which is that larger K 

means that the current sliding window memorizes more 

previous steps. 

 

Fig. 6 The effects of K 

 

5.2.2 Performance comparison 

 

In this section, we compare our model with the 

existing baseline and various variants of ours. Towards 

this end, we perform experiments by using evaluation 

metrics F1-score and NMI.  

To be fair, we experiment 100 times and reported the 

average results of the performance comparison on the 

three datasets in the Table 3. From the result, We 

summarize several important observations: 



 

 

Table 3: Comparisons of overall performance between CSQR and baselines 

Datesets Metrics Basic-core CSQR-W CSQR-R CSQR-WR CSQR 

IMDB F1-score 0.605 0.626 0.631 0.613 0.642 

 NMI 0.594 0.611 0.629 0.603 0.639 

DBLP F1-score 0.542 0.561 0.572 0.559 0.583 

 NMI 0.535 0.553 0.566 0.547 0.579 

Last.fm F1-score 0.563 0.573 0.584 0.554 0.598 

 NMI 0.552 0.564 0.571 0.546 0.587 

(1) Basic-core achieves poor performance on three 

datasets. This implies that strict cohesion metrics are 

difficult to adapt to real-world community structures. 

Also, Basic-core fails to take into account the 

intermediate nodes of meta-paths, as the homogeneous 

graphs induced directly based on the neighbors of 

meta-paths are insufficient to retain richer semantic 

information, which limits the performance of the model. 

(2) CSQR-W achieves better performance than 

BASIC on three datasets. This further proves that the 

community structure is difficult to satisfy the strict 

cohesiveness metric, and although both omit thef 

intermediate nodes of the meta-path, CSQR-W obtains 

the community structure related to the query node by the 

random walk strategy, which is more flexible and better 

adapted to the community structure compared to 

Basic-core. 

(3) Compared to CSQR-R, the performance of CSQR 

verifies that query node quality is extremely significant 

in community search tasks. Since the quality of 

user-defined seed node is uncertain, the poor quality of 

seed node can seriously influence the result of random 

walk. Therefore, we are more interested in node that 

have a high clustering tendency and is similar to the 

query node. 

 

5.3 Community quality analysis (RQ2) 

 

To further analyze the performance of our method, in 

this section, following [5], we analyze the quality of the 

community in the perspective of Density and Similarity. 

Density of link relationships. Conventionally, the 

density of a graph is defined as the number of edges 

over the number of vertices [16,21]. To adapt it for 

communities in HINs, Fang[5] et al redefine it as the 

number of vertex pairs that are P -connected over the 

number of vertices (here, all the vertices are with the 

target type). Fig.7 demonstrates the average density of 

communities found by different methods on all networks, 

and we observe that the CSQR-based communities have 

the highest average density. 

 

Fig. 7  The average density of community 

Similarity of community members. We have 

measured the similarity of community members by 

PathSim[20]. Specifically, we compute the PathSim 

value for each pair of vertices in the communitiy.Fig.8 

shows the average PathSim values on three datasets. 

Clearly, communities of CSQR achieve higher similarity 

values than those of other, so their members are more 

similar to each other. 

 

Fig.8 The similarity of community members 

 

5.4 Component contribution analysis (RQ3) 

 

In this subsection, we answer the third question, i.e., 

how much do the two main components of CSQR, 

induced weighted homogeneous graph and query node 



 

 

replacement, contribute to the model? Three variations 

of CSQR are discussed for this study. Their 

performances are also reported in Table 3. From the 

result, we can get the following conclusions: 

It can be observed that average F1-score and NMI 

score of CSQR-W ignoring information about 

intermediate nodes of the meta-path show a lower value 

on each dataset than that of the CSQR method, which 

indicates the effectiveness of the information about 

intermediate nodes of the meta-path. Meta-paths are 

beneficial tools for capturing the rich semantic 

information of heterogeneous information networks, and 

ignoring the information of intermediate nodes can 

result in a loss of information, which is very important 

for community search tasks on heterogeneous networks. 

In the same way, we can find a significant 

performance decrease of CSQR-R compared to CSQR. 

This indicates that the query node replacement strategy 

is very critical for our model. The query replacement 

strategy can not only select high-quality nodes to 

prepare for random walk, but also improve the accuracy 

of the community search algorithm. In a word, the query 

replacement strategy is indispensable in our model. 

 

234

 

(a) CSQR-R 

47

234

 

(b) CSQR 

Fig.9 Experimental result of CSQR-R and 

CSQR in DBLP dataset 

In order to be able to sufficiently explain that 

seed replacement is effective for solving the 

query bias problem, Fig.9 shows the boundary 

part of the experimental results for CSQR-R and 

CSQR on the DBLP dataset. Node 234 is the 

given initial query node, and the subgraph 

consisting of the orange nodes indicates the 

community located by the corresponding method. 

The experimental result for CSQR is given in 

Fig.9(a), suggesting that the returned community 

contains some noisy nodes. In contrast, Fig.9(b) 

indicates that query node 234 is replaced with 

core node 47. Intuitively, node 47 has a better 

quality compared to node 234 and therefore 

searches for a more reasonable community. 

 

6  Conclusions and Future Work 

 

This paper studies the problem of community search, 

which aims to search a community for a query vertex in 

an HIN. Specifically, we design a weighting strategy 

and query node replacement for the community search 

problem on heterogeneous networks. The weighting 

strategy enables the induced homogeneous graph to 

contain more semantic information; the query node 

replacement strategy can find better quality nodes for 

community search. We conduct extensive experiments 

on real-world graphs to show that our proposed methods 

can provide high-quality results over HINs. 

Currently, we focus on community composed of the 

same type of nodes. Therefore, in the future, we will 

study how to search community with vertices of 

multiple types (e.g., a community contains both authors 

and topics in the DBLP network) and community search 

given multiple query nodes. 
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