Pairwise Tagging Framework for End-to-end Emotion-cause Pair Extraction

Zhen WU, Xinyu DAI, Rui XIA

Frontiers of Computer Science, DOI: 10.1007/s11704-022-1409-x

Problems & Ideas

- Problems of existing works:
 - Pipelined methods: easily suffer from error propagation.
 - Multi-task learning methods: cannot optimize all subtasks of ECPE globally and may lead to suboptimal extraction results.
- Ideas: A novel Pairwise Tagging Framework (PTF) that tackles the complete emotion-cause pair extraction in one unified tagging task.
 - PTF innovatively transforms all subtasks of ECPE, i.e., emotions extraction, causes extraction, and causal relations detection between emotions and causes, into one unified clause-pair tagging task.

Tags	Meanings					
E	the clause-pair (c_i, c_i) expresses emotion, i.e.,					
	c_i is an emotion clause.					
С	the clause-pair (c_j, c_j) expresses cause, i.e.,					
	c_j is a cause clause.					
P	the clause-pair (c_i, c_j) contains a casual relation.					
0	no above three relations for clause-pair (c_i, c_j) .					

				$\mathbf{C}\mathbf{C}$	J	
c_1	$\frac{c_2}{}$	$\frac{c_3}{}$	c ₄	c ₅	$\frac{c_6}{}$	
О	О	О	О	О	О	c_1
	C	О	P	О	О	$\underline{c_2}$
		C	P	О	О	$\underline{c_3}$
			Е	О	О	\mathbf{c}_4
				Е	P	c ₅
					C	$\underline{c_6}$

Main Contributions

Contributions:

- A novel tagging framework PTF that is the first work to solve all subtasks of ECPE with a global and unified clause-pair tagging task, instead of multi-task learning;
- A PTF-based end-to-end neural network PTN that avoids error propagation and improves the performance of ECPE significantly;
- PTN introduces three helpful mechanisms and achieves state-of-theart performance on the ECPE benchmark dataset.

Models	Emotion Extraction		Cause Extraction			Emotion-Cause Pair Extraction			
Models	P	R	F1	P	R	F1	P	R	F1
Indep	83.75	80.71	82.10	69.02	56.73	62.05	68.32	50.82	58.18
Inter-CE	84.94	81.22	83.00	68.09	56.34	61.51	69.02	51.35	59.01
Inter-EC	83.64	81.07	82.30	70.41	60.83	65.07	67.21	57.05	61.28
E2EECPE	<u>85.95</u>	79.15	82.38	70.62	60.30	65.03	64.78	61.05	62.80
ECPE-2D(base)	85.37	81.97	83.54	71.51	62.74	66.76	71.73	57.54	63.66
ECPE-2D	85.12	82.20	83.58	72.72	62.98	67.38	69.60	61.18	64.96
TransECPE	80.80	84.39	82.56	67.42	<u>65.34</u>	66.36	65.15	<u>63.54</u>	64.34
RankCP(top-1)	87.35	81.46	84.28	71.30	64.68	67.90	69.10	62.54	65.62
RankCP	87.03	84.06	85.48	69.27	67.43	68.24	66.98	65.46	<u>66.10</u>
PTN(base)	84.12	81.61	82.82	72.02	63.66	67.50	71.38	59.48	64.80
PTN	84.47	82.78	83.60	71.75	64.70	<u>67.99</u>	76.00	59.18	66.50

Best and second-best results are respectively in bold and underline. With the help of novel unified tagging framework PTF, the proposed end2end model PTN outperforms the pipelined methods such as Inter-CE, Inter-EC, and multi-task methods such as E2EECPE. ECPE-2D, and RankCP.