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1 Highlights
1. A hierarchical meta-heuristic framework consisting of two nested local

search procedures to tackle the MDT problem.

2. An effective neighborhood structure for the inner layer local search and
a fast neighborhood evaluation method that enable TLMH to achieve a
better balance between exploitation and exploration.

3. A sampling phase that quickly determines the promising search space pro-
viding a better convergence for TLMH.

4. Tests conducted on 72 public instances of the MDT problem, disclosing
that TLMH improves the best-known solutions from heuristics in 14 in-
stances.

5. Benchmark RangL providing 18 large instances for future comparison.

6. Extensive experiments to analyze the contributions of key features of our
algorithm establishing that these primary ingredients when worked in uni-
son outperform the cases where they are applied in isolation.

2 Preliminary Discussion
2.1 Definitions
Given an undirected weighted graph G = (V,E) where each edge is assigned a
positive weight, a subgraph of G denoted as T = (V ′, E′) is said to be a domi-
nating tree if any vertex not in V ′ is adjacent to at least one vertex of V ′ with
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the condition that T is connected and without any cycle. The minimum domi-
nating tree (MDT) problem aims to find a dominating tree with the minimum
weight for a given graph.

In this paper, the problem instance we operate on is a simple undirected
weighted graph G = (V,E) where V is the set of vertices and E is a set of
weighted edges. A weight function w : V → R+ associates each edge e ∈ E a
positive weight. To better describe our proposed algorithm for MDT problem,
we give the following definitions.

Articulation Points A vertex v ∈ V is an articulation point of G if its removal
disconnects the graph.

Connected Vertices Set We say that a vertices set X ⊆ V is a connected
vertices set if the subgraph G[X] deduced by X is connected.

Dominating Set A vertices set X ⊆ V is a dominating set of G = (V,E) if its
closed neighborhood ΓG[X] equals to V , where ΓG[X] = X ∪ {v ∈ V |u ∈
X, {u, v} ∈ E}.

Connected Dominating Set If a connected vertices set is also a dominating
set, we call it a Connected Dominating Set (CDS).

Spanning Tree The acyclic graph T = (V T , ET ) is a spanning tree of graph
G = (V,E) if V T = V and ET ⊆ E.

Dominating Tree Given a CDS X for graph G, a dominating tree is a span-
ning tree of the subgraph of G deduced by X (G[X]).

Minimum Dominating Tree The dominating tree for a graph with the small-
est edge weights summation, MDT for short.

2.2 MDTP and MCDSP
The MDT problem and the MCDS problem share some similarities with each
other. Both problems aim to find a sub-structure that dominates the whole
vertices set. Given an undirected graph G = (V,E) and its dominating set X, a
feasible dominating tree can get from a feasible dominating setX by determining
the spanning tree of the graph G[X]. For unweighted graphs or weighted graphs
with similar edge weights, an algorithm for the MCDS problem can be used to
solve the MDT problem. Since, in this case, the MDT problem is looking for the
dominating tree with the minimum number of edges (or the minimum number
of vertices), i.e., the minimum dominating set.

If the edge weights are different in the instance graph, the dominating tree
weight tends to be smaller if deduced from a smaller CDS. To check this, we
perform a simple experiment to compare the weight of dominating trees deduced
from CDSs with different sizes. We find CDSs with different sizes as much as
possible for one problem instance and record the corresponding dominating tree
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Figure 1: Relationship between dominating tree weights and the CDS sizes

weights. Figure 1 illustrates the results for three problem instances (They are
from the public benchmark introduced in Section 4).

From Figure 1, we observe that, although it is not always the case, the
CDS with a smaller size usually produces a smaller dominating tree. This phe-
nomenon appears on other instances if the same experiment is performed. How-
ever, for most cases, the minimum spanning tree from the minimum dominating
set may be not the MDT. The dominating tree with more vertices may get a
smaller weight compared to those with fewer vertices. For example, in Fig. 2,
the MDT is the minimum spanning tree of {A,C,D} rather than the MCDS
{C,D}.
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Figure 2: MCDS vs MDT

Although the algorithms for MCDS cannot be used to solve the MDT di-
rectly, we can use them to facilitate the solving of the MDT problem. Given a
CDS configuration, the minimum spanning tree of the subgraph deduced from
this CDS is always a feasible dominating tree of the original graph. Finding
a minimum spanning tree of a subgraph can be done in O(|V |2) time by im-
plementing Kruskal’s or Prim’s algorithm on the subgraph. We have already
known that the minimum spanning tree of the MCDS may not be the optimal
MDT. However, from the experiment, we observe that the dominating trees
with fewer vertices usually get less weight than those with more vertices. Thus,
we can focus on exploring the feasible dominating trees among the configura-
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tions of fewer vertices. More specifically, we explore the feasible dominating
trees among the CDS configurations of which the vertices number is close to the
optimal MCDS configuration. This indicates that the approach of determining
k-CDS is critical to our research. In the following sections, we describe how the
algorithm of k-CDS is embedded into our approach.

3 Solution Method
In this section, we describe the proposed TLMH algorithm in detail. The TLMH
algorithm consists of two local search processes constructed in a multi-layered
structure. The outer layer is a simple local search maintaining a solution pool.
The inner one is another more sophisticated local search, aiming to find a MDT
with a fixed number of vertices.

3.1 Main Framework
The proposed TLMH algorithm follows a general framework consisting of two
phases: Sampling and Local-Search[1], as described in Algorithm 1. The config-
uration T = (X,E′) that TLMH manipulates is a compound structure consisting
of a vertex set X and the minimum spanning tree E′ of the deduced graph G[X].
During the process of TLMH, X for all the configurations are restricted to be
a connected vertices set of graph G. If X is a CDS of graph G, the minimum
spanning tree in that configuration is a dominating tree of graph G. The con-
figuration pool T maintains one best configuration for each CDS size, e.g., T [i]
represents the best configuration with i vertices.

The initialization and sampling phase (line 2) quickly provides a pool of
initial dominating tree configurations (T ) and determines the CDS sizes that
are promising to produce a dominating tree with less weight. Lines 3-11 are
the processes of the outer layer local search. In each iteration, we retrieve the
best configuration T0 from T and try to improve this configuration using the
inner layer local search process (Section 3.3.1). Then we retrieve the neighbor
configurations (Tι) of T0 from T , of which the CDS size differs one or two
compared to T0, and improve them also using the same method. Finally, T is
updated if any newly obtained configuration is better than the one in it for the
specific CDS size. In Algorithm 1, |Tι| represents the number of vertices of the
dominating tree of the configuration T . Note that, in Line 6, if the configuration
T [k] does not exist, a random configuration with |X| = k is provided to the
procedure TryKDTP. This outer local search process is designed as simply as
possible to provide better performance. The termination condition for TLMH
algorithm can be set as the time limit.

In the following, we first describe how the procedure InitAndSample works,
and then discuss the core part of the proposed TLMH, i.e., the procedure
TryKDTP looking for a MDT with a fixed number of vertices.
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Algorithm 1 TLMH
Input: The instance graph G(V,E)
Output: A DPT configuration Tb

1: procedure TLMH(G)
2: T ←InitAndSample(G)
3: repeat
4: Tb ← the best configuration in T
5: for ι ∈ {0, 1,−1, 2,−2} do
6: Tι ←TryKDTP(G, T [|Tb|+ ι], T )
7: if Tι is better than T [|Tι|] then
8: T [|Tι|]← Tι

9: end if
10: end for
11: until The termination condition is met
12: Tb ← the best configuration in T
13: return Tb

14: end procedure

3.2 Initialization and Sampling
The procedure InitAndSample samples each possible CDS size a correspond-
ing dominating tree and groups these dominating trees as an initial solution
pool for later use. This solution pool also provides an estimation about the
CDS size that is promising to produce better dominating trees. Algorithm 2
describes the process of InitAndSample.

Let us denote gt the minimum spanning tree of G. The sub-structure ob-
tained from removing the leaves of gt is a feasible dominating tree of G. Thus,
we find the first feasible solution (V ′, E′(V ′)) where V ′ is the non-leaf vertices
of gt and E′(V ′) is the minimum spanning tree of the deduced graph G[V ′],
i.e., gt removing leaves. Starting from the k value of |V ′| − 1, we find a CDS X
with k vertices and calculate the MDT of the deduced graph G[X]. Then this
spanning tree is temporarily considered the best one for the size k and stored
into the solution pool. The iteration stops when no feasible CDS can be found
for the current k value. The solution pool T is returned for later use. In this
way, we quickly find the proper CDS sizes that may produce better dominating
trees.

To find a CDS, an MCDS solver can be used. Since this procedure only
provides an estimation and, as described in Section 2.2, the MCDS does not
usually produce the MDT, we do not need a strong MCDS solver but a fast one.
In this paper, we use a simplified version of the RNS-TS algorithm introduced
in the literature [2], the RNS-TS without tabu mechanism and perturbation
operations.
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Algorithm 2 Initialization and Sampling
Input: G(V,E)
Output: The configuration pool T
1: procedure InitAndSample(G)
2: T ← []
3: gt ← the minimum spanning tree of G
4: V ′ ← the non-leaf vertices in gt
5: T [|V ′|]← (V ′, E′(V ′))
6: k ← |V ′| − 1
7: repeat
8: Find a CDS X of G with k vertices.
9: T [k]← the minimum spanning tree of G[X]
10: k ← k − 1
11: until No feasible X exists
12: return T
13: end procedure

3.3 Solving k-DTP
Our approach to tackling the MDT problem is based on a serial minimization
approach denoted as k-DTP. k-DTP searches the MDT of a graph while the
number of vertices is restricted to k. Our algorithm repeatedly tries to find
an MDT of k vertices in G while the value k is heuristically varied during the
search process. In this section, we present the inner local search procedure of
the TLMH (TryKDTP) to tackle the k-DTP problem.

3.3.1 Inner local search procedure for k-DTP

Starting from an initial configuration T0, procedure TryKDTP tries to find
a MDT with |T0| vertices. It is described in Algorithm 3. In each iteration,
the algorithm applies one neighborhood move that improves the current con-
figuration most. The process continues until the termination condition is met.
We introduce a procedure Perturbation to diversify the search process, thus
obtaining better results. It maintains the solution pool T and the best configu-
ration Tbest found in this round and triggers a diversification operator when the
process is trapped in a local optimum.

The termination condition here can be set as the time consumed, the overall
iterations or the number of perturbations performed, etc. In this paper, we set
the condition to be the number of perturbations. More specifically, TryKDTP
terminates if the perturbation has been triggered over five times. Note that
in the scope of TryKDTP procedure, the number of vertices in X does not
change.

3.3.2 Search space and cost function

The search space (set of configurations) explored by this inner local search
procedure is denoted by S notation. A configuration T = (X,E′) is a compound
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Algorithm 3 Local Search k-DPT
Input: G = (V,E), Initial configuration T0, T
Output: A DPT configuration Tbest

1: procedure TryKDTP(G,T0, T )
2: Tbest ← T ← T0

3: repeat
4: mv ← FindMove(G,T )
5: T ← MakeMove(G,T,mv)
6: T, Tbest, T ← Perturbation(T, Tbest, T )
7: until The termination condition is met
8: return Xbest

9: end procedure

structure where X ∈ V is any connected set of k vertices, and E′ is the minimum
spanning tree of the deduced graph G[X]. Given a configuration T = (X,E′) ∈
S, we denote by X+ = ΓG(X)\X the set of vertices that do not belong to X
and are dominated by X, and by X− = V \ΓG(X) the set of vertices that are
not dominated by X.

The cost f(T ) of configuration T is defined as

f(T ) = αf1(X) + f2(E
′) (1)

where f1(X) = |X−| represents the number of vertices that are not dominated
by T and f2(E

′) =
∑

e∈E′ c(e) represents the weight of the minimum spanning
tree of G[X]. α is a large constant to make f2 inferior to f1. Please note that a
configuration T represents a feasible solution of k-DTP if and only if f1(X) = 0.

3.3.3 Neighborhood definition

Given a configuration T = (X,E′) ∈ S, we denote by < x, y, ψ > the move
operator, by which a vertex x ∈ X is removed from X, another vertex y ∈ V \X
is added into X, and ψ is the process of determining the minimum spanning tree
of graph G(X). In addition, T⊕ < x, y, ψ > denotes the configuration obtained
by applying the operator < x, y, ψ > to T . Thus we have

T⊕ < x, y, ψ >= (X\{x} ∪ {y}, ψ(G(X))) (2)

However, as changing vertices in X may disconnect the configuration, such
that the spanning tree determining process becomes impossible, the set of oper-
ators applicable to T is defined as a restricted set. This set, denoted by M(T ),
consists of the set of operators < x, y, ψ > satisfying the following three proper-
ties: (1) x must not be an articulation vertex of graph G[X]; (2) y must belong
to set X+; (3) if x is the only vertex that y connects to X, this operator is
excluded from M(T ). Figure 3 illustrates a move operation of the proposed
algorithm.
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Figure 3: Move < B,D,ψ >

3.3.4 Neighborhood evaluation

Given a move m ∈M(S), we denote by δ(m) the score of m, i.e., its impact on
the score of the configuration, defined according to

δ(m) = f(T ⊕m)− f(T ) (3)

However, it is time consuming to use this equation to calculate δ directly,
since the time complexity of calculating f1 isO(|V |) and f2 is at leastO(|E(X)|+
|X| log |X|). There is a method to reduce the calculation by an incremental
evaluation. In most of the case, one operator only changes a small part of the
configuration. Thus, if these changed parts can be determined, δ can be calcu-
lated in a faster manner. We will describe how the fast incremental evaluation
is implemented for f1 and f2 respectively in Section 3.3.5 and Section 3.3.6.

The procedure FindMove represents the process of neighborhood evaluation
of the current configuration, i.e., how the best move for the current configuration
is found. It returns a move with the least δ value. Procedure MakeMove
applies the chosen move to the current configuration.

To prevent the search process trapped in the local optimum trap too early,
we implement a tabu mechanism [3] in this local search procedure. Each time
when a move < x, y, ψ > is performed, we set vertex y a tabu state with a tabu
tenure tt randomly between ttMin and ttMax, where ttMin and ttMax are
tunable parameters of the proposed TLMH. For the following tt iterations, any
moves related to y are excluded from the neighborhood M(T ).

3.3.5 Fast incremental evaluation for f1
For f1, we use the same fast incremental evaluation technique from one of the
state-of-the-art MCDS algorithms RSN-TS[2]. The neighborhood evaluation
procedure maintains an array L[i] measuring the number of vertices in X con-
nected to vertex i.

L[i] = |{j|{i, j} ∈ E, j ∈ E)}| (4)

With the information from L[i], we can quickly assert that the vertex i is in
ΓG(X) as long as L[i] is greater than 0. Thus, f1 can be calculated by:

δ(m) = δ−(x) + δ+(y) (5)
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where δ−(x) and δ+(y) represents the changing value caused by removing or in-
serting operation. δ−(x) can be calculated by counting the neighbors of x, which
belongs to X+, and the corresponding L value is 1. δ+(y) can be calculated
by counting the neighbors of y, which belongs to X−, and the corresponding
L value is 0. There is one exception when calculating δ−(x), if the vertex x is
connected to y, then it isn’t taken into count. From the above description, we
know that the time complexity of evaluating δ(m) is O(|Cx|+ |Cy|), where Cx

and Cy represent the set of neighbors for x and y respectively.
After a move < x, y, ψ > is performed, L needs to be updated to make the

value consistent with the current configuration. The L values correspond to the
neighbors of x and y need to be refreshed. Specifically, for all the neighbors of
x, the L value is decreased by 1, while for all the neighbors of y, the L value is
increased by 1.

3.3.6 Evaluation for f2
The core of the calculation for f2 is how to determine the minimum spanning
tree for the sub-graph G(X), i.e., the process ψ in Equation (2). Although the
algorithm of determining the minimum spanning tree is quite mature and can
be done in polynomial time using Prim’s or Kruskal’s algorithm, it is still time-
consuming if it has to be executed once for the evaluation of each candidate
move. Considering that there are a large number of candidate moves to be
evaluated for each iteration of the neighborhood evaluation, the time consumed
by the minimum spanning tree determination is undesirably too much.

To alleviate the calculation workload, we only calculate f2 when f1 = 0.
During the evaluation, f1 is always calculated before f2. If f1 > 0, it indicates
that there exists vertex that is not dominated. Thus, in this situation, the
minimum spanning tree of X does not dominate the whole graph, i.e., the
tree weight is insignificant because of its impracticality. Therefore, we do not
calculate f2 here and simply assign f2 = 0. The value of f2 is calculated when
f1 = 0, i.e., the spanning tree dominates all the vertices. From Equation (1),
we know that there is a large constant parameter α on f1, thus, the value of f2
does not impact f much and the evaluation results depend on f1 only if f1 > 0.
Which is to say, when f1 > 0, we can neglect f2 safely. Our algorithm performs
Kruskal’s algorithm on the current G[X] when f2 is needed for the evaluation.
We implement Kruskal’s algorithm [4] with the disjoint-set data structure [5]
such that the time complexity is O(n log n). Please note that Prim’s algorithm
[6] is also acceptable here.

3.4 Diversification
We implement a random perturbation operator as a diversification mechanism
to improve further the solution quality. Perturbation can be considered as a
jump in the search space. It is triggered when the search process is trapped in
a local optimum. Inspired by the breakout local search algorithm [7, 8, 9, 10],
the perturbation operator consists of a series of random moves of which the
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number depends on the current search state. As described in Algorithm 3, the
Perturbation procedure is executed in each iteration of the TryKDTP. The
details of Perturbation procedure are described in Algorithm 4.

Algorithm 4 The procedure of the perturbation operator PerturbDiv
Input: Current configuration T , Best configuration for this round Tbest, T
Output: The updated X, Tbest and X
1: procedure Perturbation(X,Tbest,X )
2: if (f(T ) = f(T [|T |]) and T ̸= T [|T |]) or f(T ) < f(T [|T |]) then
3: T [|T |]← T , g_str ← minStr
4: else if T = T [|T |] then
5: g_str ← min{g_str + 1,maxStr}
6: end if
7: if f(T ) < f(Tbest) then
8: Tbest ← T , g_stagIters← 0
9: else
10: g_stagIters← g_stagIters+ 1
11: end if
12: if g_stagIters > α then
13: T ← T [|T |]
14: repeat
15: mv ← generate a random move
16: X ←MakeMove(X,mv)
17: until g_str times
18: g_stagIters← 0
19: end if
20: return T , Tbest, T
21: end procedure

Perturbation maintains two global variables, g_str measuring the number
of random moves to be performed and g_stagIters counting the number of
iterations failed to improve the best configuration Tbest. g_str is initialized as
minStr at the beginning of TryKDTP procedure. If the current configuration
is identical to the one stored in pool T , g_str is incremented by 1 while bounded
by maxStr (line 5 in Algorithm 4). It is reset to minStr when a configuration
better than T [|T |] or an equally good but different one is found (line 2). minStr
and maxStr are determined by the equations minStr = perturbMin× |X| and
maxStr = perturbMax×|X|, where perturbMin and perturbMax are tunable
parameters of the proposed TLMH. Variable g_stagIters is also initialized at
the beginning of TryKDTP with value 0. It is reset to 0 when the current
best configuration Tbest updates, and is increased by 1 for other cases (lines
7 to 11). The actual diversification process (lines 12 to 19) is only executed
when g_stagIters exceed the threshold α, where α is a tunable parameter of
the proposed TLMH. The core idea of this perturbation operation lies in that
if the search process keeps meeting the same local optimum, it indicates a local
optimum trap. Thus, a more intense perturbation should be performed to help
the algorithm jump out of this local optimum trap. Note that the diversification

10



is always performed on the ever best configuration but not the current one (line
13).

4 Computational Results and Comparisons
In this section, we report the experimental results of TLMH on the benchmark
instances widely used in the literature and compare the results with several
reference algorithms.

4.1 Problem instances and experiment protocol
We used the DTP benchmark introduced by Dražić et al.�[11] and Range bench-
mark introduced by Sundar and Singh [12]. For the randomly generated bench-
mark DTP, we used the larger-scale portion (18 instances) of the benchmark
where vertex-set size of the instances is in {100, 200, 300} and the edge-set size
is in {150, 200, 400, 600, 1000}. The Range benchmark (54 instances) is also
randomly generated but according to a certain vertex transmission range. The
number of vertices is in {50, 100, 200, 300, 500} and the transmission range is in
{100m, 125m, 150m}. We also introduce RangeL benchmark (18 instances) in
this paper similarly generated as Range but with much larger graphs. All these
instances can be downloaded online or obtained from the author.

The TLMH algorithm is programmed in the Java programming language
1. All experiments for TLMH were tested on a PC with Intel Core i7 2.9GHz
CPU and 16GB RAM with JDK 11. The referenced meta-heuristics ABC_DT,
AOC_DT and EA/G-MP are implemented in C and tested on a 3.0GHz Intel
Core 2 Duo processor-based system with 2GB RAM, while ABC_DTP is also
implemented in C but tested on a 1.6 GHz Core 2 Duo system with 1GB RAM.
The other two referenced meta-heuristics VNS and GAITLS are implemented
in C and C++ and tested on an Intel(R) Xeon(R) CPU E7-4803 2.13GHz with
8GB memory. We also compared our proposed TLMH with an exact approach
introduced by Álvarez-Miranda et al. [13]. Their algorithm was tested on an
Intel Core i7-4702MQ with 2.2GHz and 4GB RAM.

4.2 Parameter tuning
In this section, we conduct a preliminary experiment to identify and fix the
values of key parameters used in the TLMH algorithm.

• Parameters ttMin and ttMax determine the range of the tabu tenure (tt).
We have tested three possible values for these parameters: [ttMin, ttMax] =
[5, 10], [10, 50] and [50, 100]

• Parameter α corresponds to the period used to apply a perturbation. We
have tested three values for this parameter: α = 100, 250 and 500.

1The executable file and the source code can be downloaded from
https://github.com/xavierwoo/DTPSolver (uploaded and accessed on July 11th 2022)
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• Parameter perturbMin and perturbMax bound the perturbation strength.
We have tested three possible values for these parameters [perturbMin, perturbMax] =
[0.1, 0.3], [0.3, 0.5] and [0.5, 0.8]

• The time limit is set to be 1000 seconds for all the experiments in this
paper.

In this experiment, we have used 18 representative instances from the Range
benchmark, which are 50-1, 100-1, 200-1, 300-1, 400-1, and 500-1 from the three
transmission range sets {100m, 125m, 150m}.

We used the scientific tuning tool irace 2 [14] to do the automatic parame-
ter tuning work. irace automatically generated 71 configurations (combinations
between parameter settings and instances) for the evaluation. From the re-
port of irace, the parameter setting [ttMin, ttMax] = [5, 10], α = 250 and
[perturbMin, perturbMax] = [0.5, 0.8] fits this benchmark most. In the follow-
ing experiment, we fix the parameter to this setting. Moreover, we observe that
no matter how the setting changes, the results do not show much difference on
the smaller scaled instances. All the settings produce the same best and aver-
age result on all 50-1 instances, and they produce the same best result on all
100-1 and 200-1 instances. This indicates the robustness of the proposed TLMH
algorithm.

Note that this experiment does not guarantee the best parameter values.
The best one may vary on different benchmarks.

4.3 Experiment on DTP large benchmark
In this section, we tested the proposed TLMH on the DPT benchmark. Since
all the algorithms produce the same results very quickly for the small-scale
instances of this benchmark, we only show the results for the large-scale portion.
The detailed experimental results and the comparison among VNS, GAITLS,
and the exact algorithm are presented in Table 1. The start marks that TLMH
obtains a better best value than all the other meta-heuristics in this table. The
bolded value represents that the corresponding algorithm performs no worse
than the other meta-heuristics in this criterion. The value with a + mark in
the EXACT column represents that it is not proven optimal by the algorithm.
The time column for TLMH represents the average time in seconds that TLMH
consumed to obtain the best results. This format applies to all the following
tables.

From Table 1, we observe that TLMH outperforms VNS with a large mar-
gin. Comparing to GAITLS, TLMH produces better best results by outperform
on five instances (200-400-1, 200-400-2, 300-600-1, 300-600-2, and 300-1000-0)
while GAITLS produces better overall average results. Comparing to the exact
algorithm, TLMH is able to obtain the same results for instances that the ex-
act algorithm can proof optimality. For the last three instances that the exact

2The documentation for irace can be found at https://www.rdocumentation.org/packages/irace/versions/3.4.1
(accessed on July 11th 2022)
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Table 1: Computational results of TLMH and comparisons on DTP

instance TLMH VNS GAITLS EXACT
best average time best average best average

100-150-0 152.57 152.57 2 152.57 154.61 152.57 152.57 152.57
100-150-1 192.21 192.21 11 192.21 194.22 192.21 192.21 192.21
100-150-2 146.34 146.34 87 146.34 148.35 146.34 146.34 146.34
100-200-0 135.04 135.04 60 135.04 136.41 135.04 135.04 135.04
100-200-1 91.88 91.88 13 91.88 92.03 91.88 91.88 91.88
100-200-2 115.93 115.93 9 115.93 117.11 115.93 115.93 115.93
200-400-0 257.09 257.23 370 306.06 343.95 257.09 257.09 257.09
200-400-1 *258.77 258.88 486 303.53 331.1 258.93 258.93 258.77
200-400-2 *238.27 241.72 370 274.37 389.51 238.29 238.29 238.27
200-600-0 121.62 127.73 460 132.49 150.39 121.62 121.62 121.62
200-600-1 135.08 145.20 441 162.92 198.21 135.08 135.08 135.08
200-600-2 123.31 123.70 264 139.08 154.36 123.31 123.31 123.31
300-600-0 348.03 351.22 529 471.69 494.62 348.03 348.03 348.03
300-600-1 *413.93 416.64 753 494.91 542.46 415.32 415.32 413.93
300-600-2 *352.15 353.77 760 500.72 535.3 385.53 385.53 352.15
300-1000-0 *148.63 150.10 629 257.72 264.33 149.57 149.57 147.17+

300-1000-1 165.21 165.91 477 242.79 325.16 165.19 165.19 165.32+

300-1000-2 154.64 169.39 595 233.18 251.41 154.61 154.61 154.59+

average *197.26 199.75 351 241.86 267.97 199.25 199.25 197.18

algorithm fails to proof optimality, TLMH produces better result on instance
300-1000-1 while slightly worse results on the other two.

4.4 Experiment on Range benchmark
In this section, we tested the proposed TLMH on 54 public problem instances
from Range widely used in the literature [15, 16]. The parameters of TLMH have
been fixed guided by the preliminary experiment reported in Section 4.2. The
detailed experimental results and the comparison among ABC_DT, ACO_DT,
EA/G-MP, ABC_DTP and the exact algorithm are presented in Table 2, Table
3 and Table 4.

Table 2: Computational results of TLMH and comparisons on Range-100

instance TLMH ABC_DT ACO_DT EA/G-MP ABC_DTP EXACT
best average time best average best average best average best average

50-1 1204.41 1204.41 1 1204.41 1204.41 1204.41 1204.41 1204.41 1204.41 1204.41 1204.41 1204.41
50-2 1340.44 1340.44 <1 1340.44 1340.44 1340.44 1340.44 1340.44 1340.44 1340.44 1340.69 1340.44
50-3 1316.39 1316.39 <1 1316.39 1316.39 1316.39 1316.39 1316.39 1316.39 1316.39 1316.39 1316.39
100-1 1217.47 1217.47 17 1217.47 1218.15 1217.47 1217.47 1217.47 1217.61 1217.47 1218.59 1217.47
100-2 1128.40 1128.40 44 1128.40 1128.42 1152.85 1152.85 1128.40 1128.54 1128.40 1136.50 1128.40
100-3 1252.99 1253.41 202 1252.99 1253.14 1253.49 1253.49 1253.49 1257.37 1252.99 1253.30 1252.99
200-1 1206.79 1206.80 515 1206.79 1209.52 1206.79 1207.61 1206.79 1208.26 1206.79 1210.25 1206.79
200-2 *1213.24 1213.27 395 1216.41 1219.74 1216.23 1217.73 1216.41 1222.23 1216.41 1219.38 1213.24
200-3 1247.25 1247.41 313 1253.02 1258.06 1247.25 1248.94 1247.63 1250.78 1247.73 1252.15 1247.25
300-1 1215.48 1217.40 564 1229.97 1237.47 1228.24 1243.70 1225.22 1230.48 1215.48 1220.39 1215.48
300-2 1170.85 1171.08 341 1182.52 1200.79 1176.45 1193.95 1170.85 1171.30 1170.85 1171.15 1170.85
300-3 *1247.51 1249.51 348 1257.21 1271.20 1261.18 1276.75 1252.14 1260.83 1249.54 1254.67 1247.51
400-1 *1211.33 1213.51 502 1223.61 1241.75 1220.62 1237.45 1211.72 1220.79 1212.51 1214.36 1211.33
400-2 *1197.66 1198.99 432 1220.54 1235.29 1209.69 1246.14 1199.92 1202.82 1199.23 1202.9 1197.66
400-3 *1245.31 1248.47 633 1266.41 1276.80 1254.10 1270.34 1248.29 1268.38 1246.94 1258.76 1245.25
500-1 *1197.26 1202.81 678 1233.14 1241.60 1219.66 1240.05 1206.07 1222.12 1200.06 1208.73 1201.31+
500-2 1221.76 1226.81 570 1245.59 1258.33 1273.86 1295.51 1226.78 1240.62 1220.68 1230.07 1220.47
500-3 *1231.84 1236.64 583 1249.17 1278.67 1232.71 1259.08 1232.15 1250.48 1231.95 1236.33 1231.81

average *1225.91 1227.32 348 1235.80 1243.90 1235.10 1245.68 1228.03 1234.10 1226.57 1230.50 1226.06

From Table 2, we observe that TLMH outperforms other meta-heuristics in
terms of the best and the average value obtained, for the larger scaled instances,
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i.e., the instances over 200 vertices. TLMH fails on instance rang100/500-2 giv-
ing the result of 1225.29 where ABC_DTP produces a better result of 1220.68.
However, TLMH produces a better average result in this instance comparing
to others. In terms of the overall average values, TLMH outperforms the other
meta-heuristics. And the average best of TLMH is better than the exact al-
gorithm because there is one instance (500-1) that the exact algorithm cannot
solve to optimal.

Table 3: Computational results of TLMH and comparisons on Range-125

instance TLMH ABC_DT ACO_DT EA/G-MP ABC_DTP EXACT
best average time best average best average best average best average

50-1 802.95 802.95 1 802.95 802.95 802.95 803.26 802.95 802.95 802.95 802.95 802.95
50-2 1055.10 1055.10 2 1055.10 1055.10 1055.10 1055.10 1055.10 1055.10 1055.10 1055.10 1055.10
50-3 877.77 877.77 4 877.77 877.77 877.77 877.77 877.77 877.77 877.77 877.83 877.77
100-1 943.01 943.01 102 943.01 943.01 943.01 946.37 943.01 943.01 943.01 943.01 943.01
100-2 917.00 917.23 281 917.00 917.03 935.71 938.71 917.95 917.95 917.00 917.38 917.00
100-3 998.18 998.18 44 998.18 998.82 998.18 1006.11 998.18 998.18 998.18 999.91 988.18
200-1 910.17 910.17 195 910.17 911.61 910.17 910.50 910.17 910.17 910.17 911.66 910.17
200-2 921.76 921.76 184 921.76 922.62 928.84 942.72 921.76 923.03 921.76 925.38 921.76
200-3 939.60 939.61 333 942.32 944.93 951.36 959.63 939.58 949.18 939.58 943.20 939.58
300-1 977.65 977.65 416 981.31 984.63 978.91 980.11 977.65 981.04 979.81 981.85 977.65
300-2 913.01 913.01 402 917.31 926.87 918.40 949.05 913.01 914.08 913.01 913.88 913.01
300-3 974.78 974.78 315 974.98 979.95 981.15 981.33 974.85 979.34 974.78 978.35 974.78
400-1 966.01 966.03 225 967.34 971.07 968.66 980.6 965.99 966.59 965.99 966.71 965.99
400-2 *934.17 937.88 506 947.57 952.49 941.52 961.71 941.02 943.53 941.02 942.59 934.17
400-3 1002.61 1002.67 525 1003.24 1007.05 1002.61 1009.07 1002.97 1003.62 1002.61 1003.33 1002.61
500-1 963.89 965.91 272 967.32 975.25 986.49 991.85 963.89 963.89 963.89 964.80 963.89
500-2 948.57 949.57 457 954.89 965.45 953.77 996.85 948.57 952.96 948.96 950.12 948.57
500-3 980.67 982.73 553 992.3 1001.21 1006.23 1007.36 980.67 992.64 981.90 986.01 980.67

average *945.94 946.45 283 948.58 952.10 952.27 961.01 946.39 948.61 846.53 948.00 945.38

From Table 3, we observe that TLMH produces no worse result on most
of the instances of transmission range 125m set than the others. It produces
comparable results with EA/G-MP and ABC_DTP. Comparing to ABC_DT
and ACO_DT, the results from TLMH are better for most of the instances in
this set. TLMH updates the ever best objective value of instance range125/400-
2 over other meta-heuristics. TLMH fails to produce the same good objective
value as EA/G-MP and ABC_DTP on instances range125/200-3 and range125/400-
1. But it produces better average results on these two instances comparing to
the others. In terms of the overall average values, TLMH outperforms the other
meta-heuristics while it is slightly inferior to the exact algorithm.

The results in Table 4 are similar with those in Table 3. We observe that
TLMH produces comparable results with EA/G-MP and ABC_DTP, while
it outperforms ABC_DT and ACO_DT on larger scaled instances. TLMH
updates the ever best objective value for instance rang150/500-3. It fails on
three instances, range150/50-3, range150/400-2, and range150/500-2, in terms
of best objective value. For instance range150/400-2, TLMH produces a better
average result than the others. In terms of the overall average values, TLMH
outperforms the other meta-heuristics, while the round value is comparable to
the exact algorithm.

Table 5 reports the summary information of the compared algorithms on
each data set in Range benchmark. Columns BT (better) reports the number
of instances that the corresponding algorithm produces better results than the
others in the data set. Columns NW (no worse) reports the number of instances
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Table 4: Computational results of TLMH and comparisons on Range-150

instance TLMH ABC_DT ACO_DT EA/G-MP ABC_DTP EXACT
best average time best average best average best average best average

50-1 647.75 647.75 1 647.75 647.75 647.75 647.75 647.75 647.75 647.75 647.75 647.75
50-2 863.69 863.69 2 863.69 863.69 863.69 863.69 863.69 863.69 863.69 864.04 863.69
50-3 743.94 743.94 2 743.94 743.94 743.94 743.94 743.94 743.94 743.94 745.68 743.94
100-1 876.69 876.79 297 876.69 876.85 881.37 885.36 876.69 876.69 876.69 877.02 876.69
100-2 657.35 657.35 11 657.35 657.35 657.35 657.35 657.35 657.53 657.35 657.53 657.35
100-3 722.87 722.87 2 722.87 722.87 722.87 722.87 722.87 722.87 722.87 722.87 722.87
200-1 809.90 809.90 138 809.90 809.90 809.90 810.87 809.90 810.49 809.90 809.90 809.90
200-2 736.23 736.23 354 736.23 736.27 736.23 736.23 736.23 736.23 736.23 736.23 736.23
200-3 792.71 792.71 97 792.73 797.00 792.71 793.73 792.71 795.65 792.71 793.48 792.71
300-1 796.15 796.15 283 796.70 797.94 796.70 797.17 796.15 798.12 796.29 796.99 796.15
300-2 741.02 741.03 298 741.02 743.20 748.94 752.33 741.02 743.05 741.02 742.88 741.02
300-3 819.76 819.78 129 819.76 823.76 826.48 826.56 819.76 821.67 819.76 820.45 819.76
400-1 795.53 795.88 445 796.70 801.57 796.70 798.24 795.53 798.82 795.53 797.92 795.53
400-2 779.67 779.67 388 781.20 782.28 782.91 787.66 779.63 783.14 779.63 781.40 779.63
400-3 814.14 814.18 388 816.53 822.64 826.48 831.32 814.14 817.38 814.14 815.35 814.14
500-1 792.21 792.31 357 796.50 800.25 794.47 797.13 792.21 793.59 793.98 796.16 792.21
500-2 779.38 779.41 274 779.35 785.10 779.35 791.20 779.35 781.28 779.35 780.04 779.35
500-3 *808.37 808.39 281 809.65 811.08 808.50 811.35 808.50 810.27 808.50 808.50 808.37

average 776.52 776.56 208 777.14 779.08 778.69 780.82 776.52 777.90 776.53 777.46 776.52

that the corresponding algorithm produces no worse results comparing to the
others in the data set. The best and average objective values are counted respec-
tively in the table. From the information showed in Table 5, we observe that
TLMH outperforms others by producing the most better and no worse results.
In terms of the best objective value, TLMH produces better results in nine in-
stances and no worse results in 48 ones, compared to all other meta-heuristics.
In terms of the average objective value, TLMH produces 29 better results and
45 no worse results. We also observe that the advantage of TLMH mostly shows
in range100 data set where the transmission range is 100m. This indicates that
TLMH performs better on sparse graphs than the existing meta-heuristics while
it provides comparable performances on denser graphs.

Table 5: Summary on each data set in Range

criterion data set TLMH ABC_DT ACO_DT EA/G-MP ABC_DTP

BT NW BT NW BT NW BT NW BT NW

best

range100 7 17 0 7 0 6 0 7 1 10
range125 1 16 0 8 0 7 0 14 0 14
range150 1 16 0 11 0 9 0 17 0 15
total 9 49 0 26 0 22 0 38 1 39

average

range100 12 16 1 4 0 4 0 3 1 3
range125 10 16 1 5 0 2 1 7 0 3
range150 10 17 0 6 0 6 1 6 0 4
total 32 49 2 15 0 12 2 16 1 10

4.5 Experiment on RangeL instances
From the previous experiments, we observe that large dense graphs are rela-
tively difficult for our proposed TLMH algorithm. In this subsection, we gen-
erate RangeL benchmark to test its performance on a new dataset with large
instances, providing a benchmark for future comparison. The RangeL dataset
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can be obtained online3. We generated these instances such that vertices are
deployed randomly in a 1000 × 1000 area, and each vertices pair have an edge
if they are within a specific transmission range. The edge weight is defined
as the Euclidean distance between the vertices. The number of vertices is in
{1000, 1500, 3000} and the transmission range is in {100, 300}. We generated
three instances for each combination of the vertices number and the transmis-
sion range with different random seeds. Table 6 presents the computational
results of TLMH on RangeL, where the last column shows the average vertices
number of the MDT produced by TLMH. The last three instances (Range300-
3000-1, Range300-3000-2, Range300-3000-3) seem rather difficult for TLMH,
thus the time limit for these three is set to one hour. Table 6 shows that TLMH
can solve the MDT problem with large instances. We also observe that the
vertices number of the solution is much smaller compared to the whole vertices
set (last column of Table 6). This is another proof of the observation mentioned
in Section 2.2 that the dominating tree deduced from a smaller CDS is usually
better.

Table 6: Computational results of TLMH on RangeL

instance TLMH

best average time X size

Range100-1000-1 5268.92 5429.09 757 85.5
Range100-1000-2 5417.50 5513.31 784 88.7
Range100-1000-3 5278.20 5551.54 753 88.8
Range100-1500-1 5354.81 5475.80 846 86.1
Range100-1500-2 5399.26 5531.28 759 88
Range100-1500-3 5459.77 5646.65 802 91.2
Range100-3000-1 5717.55 5875.34 934 93.2
Range100-3000-2 5676.88 5850.55 920 92
Range100-3000-3 5696.92 5824.12 900 90.1
Range300-1000-1 1631.03 1638.17 677 11.4
Range300-1000-2 1633.60 1636.24 618 11.9
Range300-1000-3 1599.42 1605.76 530 11.8
Range300-1500-1 1599.87 1609.74 643 11.6
Range300-1500-2 1674.58 1713.67 703 12.2
Range300-1500-3 1656.90 1680.26 744 11.7
Range300-3000-1 1980.85 2271.97 2231 10.4
Range300-3000-2 2047.46 2291.71 2181 10.3
Range300-3000-3 2121.76 2414.10 2162 11.5

average 3623.07 3753.29 997 50.36

5 Discussion and Analysis
In this section, we evaluate the primary strategies of TLMH, which are the
sampling phase, the fast neighborhood evaluation method, and the perturbation
operator. The experiments are performed on selected representative instances,
but it is to be noted that similar results can be observed for other ones as well.

3https://github.com/xavierwoo/DTPSolver/tree/master/instances/RangeL (Uploaded
and accessed on July 14th 2022)
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To evaluate the merits of primary TLMH, we compare TLMH with its simplified
versions obtained by

• Removing the sampling process (TLMH_NS) where the algorithm is started
from the whole vertex set V .

• Deactivating the fast evaluation for f2 (TLMH_ACT) that f2 is calculated
for each move evaluation.

• Disabling the perturbation (TLMH_NP)

To evaluate the impact of these ingredients on the searching process, we an-
alyzed the evaluation of the best objective value found so far with the computa-
tional time for TLMH, TLMH_NS, and TLMH_ACT and present the results
in Figure 4.

To evaluate the impact of the ingredients on the results, we compared
the best and average objective values obtained by TLMH, TLMH_ACT, and
TLMH_NP within 1000 seconds, of which the results are presented in Table
7. The results from TLMH_NS are far worse than the others. Thus, we do
not put them on the table. Table 7 shows that TLMH outperforms the other
two simplified versions on both best and average objective values obtained. The
time differences are not obvious. However, although it is not always the case,
TLMH_NP tends to use less time due to its defect in jumping out of local
optimum traps. Thus, it stops improving the solution earlier.

Table 7: Comparison among TLMH, TLMH_ACT and TLMH_NP

instance TLMH TLMH_ACT TLMH_NP

best average time best average time best average time

range100/50-1 1204.41 1204.41 1 1204.41 1205.811 2 1204.41 1204.84 11
range100/100-1 1217.47 1217.47 1217.47 1217.47 81 1217.47 1217.79 77
range100/200-1 1206.79 1206.80 515 1206.79 1207.23 544 1206.79 1218.39 110
range100/300-1 1215.48 1217.40 564 1215.48 1221.45 339 1216.57 1237.44 366
range100/400-1 1211.33 1213.51 502 1211.34 1219.31 734 1217.60 1234.23 357
range100/500-1 1197.26 1202.81 678 1200.06 1211.95 695 1200.06 1219.27 316
range125/50-1 802.95 802.95 1 802.95 806.08 2 802.95 809.28 1
range125/100-1 943.01 943.01 102 943.01 952.44 201 943.01 943.02 188
range125/200-1 910.17 910.17 195 910.17 917.73 83 910.17 911.63 254
range125/300-1 977.65 977.65 416 977.66 979.08 420 977.65 982.59 196
range125/400-1 966.01 966.03 225 966.01 972.88 246 966.01 972.28 94
range125/500-1 963.89 965.91 272 963.89 966.70 466 963.89 971.07 296
range150/50-1 647.75 647.75 1 647.75 647.84 1 647.75 647.84 1
range150/100-1 876.69 876.79 297 877.02 880.89 13 876.69 877.62 155
range150/200-1 809.90 809.90 138 809.90 814.73 8 809.90 811.34 102
range150/300-1 796.15 796.15 283 796.15 796.17 442 796.15 796.46 95
range150/400-1 795.53 795.89 445 795.53 795.91 310 795.67 797.99 269
range150/500-1 792.21 792.31 357 792.21 800.75 428 792.32 795.579 257
dtp/200/400-0.txt 257.09 257.23 371 257.09 257.52 478 257.09 257.14 370
dtp/200/600-0.txt 121.62 127.73 460 121.62 122.80 556 121.62 125.41 374
dtp/300/600-0.txt 348.03 351.22 530 348.60 350.79 530 348.03 350.89 380
dtp/300/1000-0.txt 148.63 150.10 630 149.70 152.00 388 148.04 150.46 498
RangeL100/1000-1.txt 5268.92 5429.09 758 5371.31 5562.123 636 5508.51 5676.687 334
RangeL100/1500-1.txt 5354.81 5475.80 847 5485.53 5664.658 834 5596.66 5752.75 790
RangeL100/3000-1.txt 5717.55 5875.34 934 5924.22 6100.743 1002 5717.55 5873.588 945
RangeL300/1000-1.txt 1631.03 1638.17 677 1631.03 1637.125 444 1634.86 1682.662 403

average 1399.32 1417.37 392 1416.41 1440.85 381 1418.36 1443.01 175

17



0.0 0.5 1.0 1.5 2.0

1
2
0
0

1
4
0
0

1
6
0
0

1
8
0
0

time (s)

tr
e
e
 w

e
ig

h
t

TLMH

TLMH_NS

TLMH_ACT

(a) range100/50-1

0 1 2 3 4 5 6 7

1
2
0
0

1
6
0
0

2
0
0
0

2
4
0
0

time (s)

tr
e
e
 w

e
ig

h
t TLMH

TLMH_NS

TLMH_ACT

(b) range100/100-1

0 1 2 3 4 5 6 7

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
5
0
0

time (s)

tr
e
e
 w

e
ig

h
t TLMH

TLMH_NS

TLMH_ACT

(c) range100/200-1

0.0 0.2 0.4 0.6 0.8 1.0 1.2

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

1
6
0
0

1
8
0
0

time (s)

tr
e
e
 w

e
ig

h
t

TLMH

TLMH_NS

TLMH_ACT

(d) range125/50-1

0 1 2 3 4 5 6

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

time (s)

tr
e
e
 w

e
ig

h
t

TLMH

TLMH_NS

TLMH_ACT

(e) range125/100-1

0 2 4 6 8

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
5
0
0

time (s)
tr

e
e
 w

e
ig

h
t

TLMH

TLMH_NS

TLMH_ACT

(f) range125/200-1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

6
0
0

8
0
0

1
0
0
0

1
4
0
0

1
8
0
0

time (s)

tr
e
e
 w

e
ig

h
t

TLMH

TLMH_NS

TLMH_ACT

(g) range150/50-1

0.0 0.5 1.0 1.5 2.0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

time (s)

tr
e
e
 w

e
ig

h
t

TLMH

TLMH_NS

TLMH_ACT

(h) range150/100-1

0 1 2 3 4 5

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
5
0
0

time (s)

tr
e
e
 w

e
ig

h
t

TLMH

TLMH_NS

TLMH_ACT

(i) range150/200-1

Figure 4: Computational performance comparison

5.1 Importance of sampling process
The sampling phase embedded in InitAndSample procedure is one of the most
ingredients of TLMH. It roughly looks for dominating trees with different sizes
of vertices set and provides an initial solution pool. The algorithm then starts
searching from the solution pool offered by this sampling phase.

From Figure 4, one finds that algorithms with the sampling phase converge
much faster than those without it. The difference is obvious from the very
early stage. This indicates the sampling phase is a critical part of the proposed
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TLMH.
The evaluation of f2 is much slower than f1. During the sampling phase,

there is no evaluation of f2. The algorithm picks any feasible CDS for each
vertex set size and generates a dominating tree for the solution pool. Although
this dominating tree may not be optimal or near-optimal for this vertex set size,
it is usually not that unacceptable. More importantly, the sampling phase can
be done very quickly. As discussed in Section 2.2, the MCDS does not usually
produce the MDT. Thus, we do not need the sampling phase to dig too much
for the MCDS. This makes the process even faster. Therefore, the result from
the sampling phase can be an estimation up to scratch for the promising search
space for the TLMH.

5.2 Efficacy of the fast evaluation
When evaluating a move operator, two terms need to be calculated in the ob-
jective function. For the evaluation of f1, TLMH adopts the technique from the
RNS-TS algorithm for the MCDS problem. This technique has been proven to
be highly effective in the literature [2]. Here, we focus on the fast evaluation
method implemented for f2.

From Figure 4, we find that TLMH_ACT, the one without the fast eval-
uation for f2, converges slightly slower than TLMH. This indicates that the
fast evaluation for f2 improves the performance to some extent. Although
TLMH_ACT and TLMH seem to converge to the same final objective as shown
in Figure 4, after comparing the results between TLMH_ACT and TLMH in
Table 7, we find that the algorithm loses robustness to produce the same best
objective if the fast evaluation method for f2 is deactivated. TLMH_ACT pro-
duces worse average results than the full-featured TLMH.

The fast evaluation method for f2 shows efficacy when the process is near the
final best solution. This is reasonable that the near-optimal solutions usually
contain fewer vertices. The algorithm takes a lot of effort to find a CDS with
a limited number of vertices at this stage, i.e., most of the time f2 does not
matter for the evaluation. Thus, neglecting the f2 alleviates the calculation a
lot. For the early stage where the algorithm focus on larger connected vertices
set, it is easier to find a CDS. Thus, the calculation for f2 is needed more often.
This is why we see from Figure 4 that TLMH and TLMH_ACT almost overlap
with each other for the early stage. All these explain why TLMH_ACT can
produce comparable best objective values as TLMH but with less stability.

5.3 Importance of perturbation
TLMH implements a random perturbation operator as a diversification mech-
anism. This perturbation operator applies several random moves of which the
number depends on the current search state. If the search process keeps meeting
the same local optimum configuration, TLMH strengthens the perturbation by
performing more random moves. Thus, there is a larger chance for TLMH to
jump out of this local optimum trap.
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We observe from Table 7 that TLMH_NP can obtain the best result as the
full-featured TLMH for some instances. However, the results from TLMH_NP
are not stable. One finds that the average objective values obtained by TLMH_NP
are much worse than TLMH and TLMH_ACT. The differences mainly show in
the larger instances, where TLMH_NP fails to produce the same best result as
TLMH. This analysis shows that the perturbation phase is critical for TLMH.

5.4 Statistical significance testing among versions of TLMH
We performed Two-sample T-Tests with unequal variance on the three versions
of TLMH (The full-featured TLMH, TLMH_ACT, and TLMH_NP) on several
representative instances from the three benchmarks to check if the differences
in the results were caused merely by randomness. The tests are performed on
each representative instance using the outputs from ten independent runs from
each version of the TLMH. Table 8 presents the p values of the test.

Table 8: p values of T-Tests on each instance between versions of TLMH

instance TLMH vs ACT TLMH vs NP ACT vs NP

Range100/ins-050-1 0.33 0.34 0.51
Range100/ins-100-1 1.00 0.11 0.11
Range100/ins-200-1 0.26 0.11 0.12
Range100/ins-300-1 0.05 0.00 0.02
Range100/ins-400-1 0.02 0.00 0.02
Range100/ins-500-1 0.01 0.01 0.23
Range125/ins-50-1 0.01 0.00 0.02
Range125/ins-100-1 0.22 0.08 0.22
Range125/ins-200-1 0.22 0.15 0.32
Range125/ins-300-1 0.03 0.03 0.11
Range125/ins-400-1 0.19 0.16 0.92
Range125/ins-500-1 0.76 0.24 0.30
Range150/ins-50-1 0.17 0.17 1.00
Range150/ins-100-1 0.02 0.02 0.06
Range150/ins-200-1 0.11 0.30 0.28
Range150/ins-300-1 0.34 0.02 0.03
Range150/ins-400-1 0.87 0.26 0.27
Range150/ins-500-1 0.09 0.19 0.32
DTP-200-400-0 0.04 0.19 0.01
DTP-200-600-0 0.31 0.69 0.49
DTP-300-600-0 0.88 0.93 0.97
DTP-300-1000-0 0.00 0.65 0.07
RangeL100-1000-1 0.01 0.00 0.02
RangeL100-1500-1 0.00 0.00 0.16
RangeL100-3000-1 0.00 0.97 0.00
RangeL300-1000-1 0.78 0.19 0.18

From Table 8, we can observe that some results from the full featured TLMH
are significantly different (p ≤ 0.05) from the other two versions, e.g., Range-
100/ins-300-1, DTP-200-400-0, RangeL100-1500-1, etc.. For most of the in-
stances, the results are similar but different. It indicates that the different
versions of the proposed algorithm produce significantly different results for
some instances, which is another proof of the criticalness of each component of
the TLMH.
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