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Abstract Federated learning has emerged as a pro-
mising approach for collaborative model training
among multiple parties. A key challenge in produc-
tion federated learning is aligning common records
from heterogeneous datasets held by different par-
ties, known as entity alignment. Specifically, pro-
duction scenarios often encounter extreme data size
unbalance - a client may have tens of records while
the server has billions. Existing methods based on
private set intersection (PSI) have efficiency bottle-
necks encoding billions of server records. In this
paper, we propose α-ESF, a practical entity align-
ment framework that breaks the efficiency bottle-
neck under extreme dataset unbalance. It exploits
the asymmetry in the client- and server-side pri-
vacy to prune the server-side dataset, and incor-
porates a novel PSI-oriented index to reduce the
encoding overhead during entity alignment execu-
tion. Uniquely, the time complexity of α-ESF is in-
dependent of the server-side dataset size. We eval-
uate α-ESF on a large-scale dataset from a real-
world mobile telecom operator. Experiments show
that α-ESF can reduce the entity alignment delay
by at least two orders of magnitude than the state-
of-the-arts under billion-scale dataset unbalance.

Keywords Entity Alignment, Federated Learning,
Private Set Intersection

1 Introduction

Federated learning has emerged as a promising para-
digm for collaborative model training that facili-
tates cooperation among multiple parties while en-
suring data privacy [1–3]. This approach holds sig-
nificant potential for a diverse range of analytics
applications involving sensitive data [4]. For in-
stance, in the field of medical big data analysis,
federated learning has been successfully employed

for tasks like disease prediction and diagnosis, en-
abling the utilization of patients’ data without ex-
posing their private medical information to exter-
nal services [5]. Furthermore, banks and insurance
companies have leveraged federated learning to de-
velop accurate machine learning models for tasks
such as risk assessment and customer recommen-
dation [6].

The effectiveness of federated learning heavily
relies on the successful alignment of entities across
parties [7–9]. In this context, the alignment refers
to the process of harmonizing heterogeneous data
from different parties to identify shared entities for
collective model training. An example scenario in-
volves a bank and an insurance company aiming to
collaborate on training a predictive model for es-
timating user insurance expenses. However, direct
sharing of users’ identifiers between the two parties
is prohibited due to privacy regulations. In such
cases, aligning the user entities becomes crucial to
allow the bank to contribute relevant records for the
same users during joint model training [10].

Private set intersection (PSI) is a fundamental
technique that enables the identification of the in-
tersection between two datasets owned by different
parties without revealing any additional informa-
tion to either party. PSI plays a vital role in align-
ing entities across parties while preserving the con-
fidentiality of the underlying data [11]. By employ-
ing PSI, parties involved in federated learning can
securely identify the entities that exist in both of
their datasets. This process facilitates collaborative
modeling specifically for those shared entities, en-
abling effective cooperation while preserving data
privacy and confidentiality.

Limitations of Prior Arts. Despite extensive re-
search on PSI in the community of secure multi-
party computation (SMC) [12], it is still challeng-
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ing to perform entity alignment with PSI efficiently
in federated learning. It is because in federated
learning, the data across multiple parties can be ex-
tremely unbalanced.

Our measurement study (Sec. 2.2) shows that state-
of-the-art PSI solutions [13, 14] and the optimiza-
tions dedicated to unbalanced PSI [15, 16] fail to
deliver satisfactory efficiency in case of unbalanced
entity alignment in federated learning.

Our Approach. We break the efficiency bottle-
neck and propose a new entity alignment solution
dedicated to data unbalanced federated learning via
optimizations at two levels.

(i) Detach the large data size from the execu-
tion time. We harness the asymmetry in privacy re-
quirements, an overlooked opportunity, to improve
the efficiency of entity alignment on unbalanced
data. The privacy asymmetry refers to the obser-
vation that the parties of many real-world applica-
tions impose different levels of privacy. For ex-
ample, it is common for the insurance companies
in the motivation example to reveal the last sev-
eral digits of users’ phone number [17], whereas
the bank would not disclose any information at all.
With such asymmetry, the party with large data size
can utilize the revealed information about the other
party to prune its own dataset, thus making the en-
tity alignment time independent of the larger data
size.

(ii) Reduce the encoding overhead via pre-comp-
utation. Traditional PSI based entity alignment so-
lutions implicitly assume a single request, and per-
form encoding on both the parties per request. In
practice, the server-side encoding may be shared
and reused across requests (either requests from the
same client or different clients). Therefore, we pro-
pose to pre-compute the server-side encoding (e.g.,
encryption) and index the encryption for fast entity

alignment. With a PSI-oriented index, we convert
the per-query server-side encoding overhead as a
one-off preparation step that is reused among mul-
tiple queries, which notably reduces the encoding
overhead in entity alignment.

We implement the above optimizations as α-ESF,
a new entity alignment solution delivers high effi-
ciency under data unbalanced federated learning. It
is featured with (i) α-indistinguishability, a client-
side privacy requirement metric, allows quantita-
tive server-side dataset pruning and is easily con-
figurable in real-life client-side privacy control mech-
anisms; and (ii) Bucket-ESF, a novel PSI-oriented
index that complies with the asymmetric privacy
requirements while reduces encoding workload dur-
ing entity alignment. On this basis, α-ESF oper-
ates in two phases: pruning and verification. In
the pruning phase, we prune the server-side dataset
based on the revealed information about the client,
which is controlled by α-indistinguishability. In
the verification phase, entity alignment is performed
on the client-side dataset and the pruned server-
side dataset leveraging the Bucket-ESF index. Im-
portantly, the time complexity of α-ESF is deter-
mined by the client-side dataset size only, which
drastically improves the efficiency of entity align-
ment solutions in case of extreme dataset unbal-
ance.

Contributions and Roadmap. Our main contri-
butions and results are summarized as follows.

• We utilize α-indistinguishability to quantify
and control the client-side privacy require-
ment in entity alignment. To the best of our
knowledge, this is the first work that exploits
the asymmetry in privacy requirements to bo-
ost the efficiency of entity alignment in fed-
erated learning.
• We design a novel PSI-oriented index called
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Bucket-ESF for fast entity alignment. It seam-
lessly integrates the asymmetric privacy, and
converts the per-query server-side encoding
overhead into a one-off preparation step.

• We propose a new PSI framework named α-
ESF, which reduces the computation time,
i.e., the efficiency bottleneck of unbalanced
PSI, from O(nS + nC) in state-of-the-art solu-
tions [13–16] to only O(

√
α · nC), where nC

and nS are the sizes of client- and server-side
datasets, respectively (nC ≪ nS).

• We conduct evaluations on both synthetic and
real-world billion-scale datasets. The exper-
imental results show that our α-ESF solution
is at least 2 orders of magnitude faster than
the prior arts [13–16] in case of billion-scale
dataset unbalance.

In the rest of this paper, we formulate the entity
alignment problem in Sec. 2 and introduce the key
techniques and overview of our solution framework
in Sec. 3. We elaborate on the detailed design in
Sec. 4-6 and present the evaluations in Sec. 7. We
review related work in Sec. 8, and finally conclude
in Sec. 9.

2 Problem Statement

In this section, we introduce the entity alignment
problem in federated learning (Sec. 2.1) and present
a measurement study on the limitations of prior PSI
based entity alignment solutions (Sec. 2.2).

2.1 Entity Alignment Problem

We consider the client-server architecture commonly
adopted in real federated learning applications, which
involve two parties, the server S and the client C.
The server S holds a private set DS = {s1, s2, · · · , snS}

with size nS. Each element si is a sample in domain

X. The client C has a private set DC = {c1, c2, · · · , cnC}

with size nC, where c j ∈ X is sampled from the
same domain.

The entity alignment in many federated learning
applications have two characteristics. (i) Unbal-
anced dataset sizes. The server-side dataset is or-
ders of magnitude larger than the client-side, i.e.,
nS ≫ nC, where nS can be at billion scale and nC is
often no more than several hundred. (ii) Asymmet-
ric privacy requirements. Stringent privacy guaran-
tee is imposed on the server-side yet less restrictive
privacy control is applied to the client-side. For
example, the last few digits of a user’s phone num-
ber are often revealed to the bank for entity align-
ment [17].

As previous studies [12, 13, 15], we assume the
semi-honest (a.k.a. honest-but-curious) adversary
model. That is, the two parties (server and client)
will honestly execute the procedures assigned to
them, but they may keep all the intermediate com-
putations and received messages, and analyze the
messages to try to learn extra information about the
other party.

Finally, we can define the following entity align-
ment problem.

Definition 1 (Entity Alignment). Given two private
sets DS and DC held by the client C and the server
S respectively (nC ≪ nS), the entity alignment
problem aims to find the intersection of these two
sets DS ∩ DC and return it to client C. The server
may only infer limited information about client spec-
ified by the client-side privacy control, while the
client should not learn any extra information about
the server expect the resulting intersection set.

Example 1. Assume domain X is all the 16-bit in-
tegers {0, · · · , 65535}. The server holds all ele-
ments in form 4x + 1, i.e., DS = {1, 5, · · · , 12353,
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· · · , 65533}. The client holds two elements DC =
{12353, 12363}. The result of the entity alignment
problem is DS ∩ DC = {12353}. In practice, C can
selectively expose several digits of DC, e.g., the last
digit is 3 for all elements in DC, while the server
should keep all its dataset confidential except the
result 12353.

2.2 Motivation Study

We now show through measurements that prior PSI
based solutions [13–16] are highly inefficient on
entity alignment, which motivates our study.

Setups. Existing PSI based solutions roughly fall
into two categories, one agnostic to dataset unbal-
ance, and the other dedicated to dataset unbalance.
In this measurement, we choose KKRT [13] and
CM [14], two state-of-the-art generic PSI solutions,
and CLR [15] and SpOT [16], two latest unbal-
anced PSI solutions. We measure the running time
of a PSI query on a client-side dataset size of 100
and a server-side dataset size of 1 billion, which
is typical for real-world federated learning applica-
tions to banks [18]. Other experimental details are
in Sec. 7.1.

Results. Fig. 1a plots the overall running time for
entity alignment. Even with a client-side dataset
size of only 100, it still takes more than 30 min-
utes to process entity alignment over the billion-
scale server-side dataset. Fig. 1b further shows the
running time breakdown. We can observe that the
communication time is negligible compared to the
computation time. The communication time is only
3.01%, 0.33%, 0.07%, and 0.11% of the overall
running time for KKRT [13], CM [14], SpOT [16]
and CLR [15], respectively.

Discussions. We make the following notes from
the measurements.
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(a) Running time

PSI Solution Comp. Comm.

KKRT [13] 96.99% 3.01%

CM [14] 99.67% 0.33%

SpOT [16] 99.93% 0.07%

CLR [15] 99.89% 0.11%

(b) Breakdown

Fig. 1 The overall running time and breakdown of prior arts
in unbalanced entity alignment scenario.

(i) Prior PSI solutions are inefficient with billion-
scale dataset unbalance. Generic solutions such as
KKRT [13] and CM [14] are inefficient because
they encode (e.g., pseudo-randomly evaluate or en-
crypt) all the server-side elements for each entity
alignment request. The state-of-the-art unbalanced
PSI solutions SpOT [16] and CLR [15] are also in-
efficient because they mainly reduce the commu-
nication cost, which is negligible compared with
the computation cost. In summary, the efficiency
bottleneck lies in the computation cost (mainly en-
coding) of server-side dataset.

(ii) None of the prior arts have utilized the asym-
metric privacy requirements in practice, i.e., the
less stringent client-side privacy constraint than the
server-side, to trade privacy for efficiency.

(iii) Existing studies neglect the optimization op-
portunities in practice. Once deployed, the server-
side often processes multiple requests from the cli-
ents. This may allow preparation and reuse of com-
putation-intensive operations across requests, and
thus reduce the overall execution time.

3 α-ESF Overview

This section presents an overview of α-ESF, a prac-
tical framework for efficient entity alignment even
in case of extreme dataset unbalance.
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Fig. 2 Overview of α-ESF framework.

Principles and Challenges. As previously men-
tioned, the efficiency bottleneck of entity alignment
lies in the computation time of encoding on billion-
scale server-side dataset. Our solution breaks this
bottleneck from two aspects.

(i) Exploit indexing to convert per-query server-
side encoding overhead to one-off pre-processing.
In practice, the server-side usually processes entity
alignment requests from multiple clients. This al-
lows pre-computing the server-side encoding and
sharing the results among clients to amortize the
server-side encoding overhead. The challenge is
how to design indexing techniques that allow fast
search on the encoded data while satisfying the pre-
defined privacy requirements.

(ii) Harness asymmetric privacy requirements to
prune server-side dataset for entity alignment. Real-
world federated learning applications often impose
less stringent privacy control on the client-side, whi-
ch holds the potentials to prune server-side dataset.
The challenge is how to quantify the client-side pri-
vacy requirement and configure server-side dataset
pruning to balance privacy and efficiency.

Solution Workflow. We implement the principles
and address the challenges above via α-ESF, which
consists of a one-off secure index construction step,
and a two-phase processing framework (asymmet-
ric privacy based pruning and encryption based

verification) for entity alignment (see Fig. 2).

• Secure Index Construction (Sec. 4). We de-
vise Bucket-ESF, a novel PSI-oriented index
that allows fast search while complying with
privacy constraints (α-indistinguishability in
our case). The index construction is a one-off
effort that serves multiple entity alignment
requests.

• Asymmetric Privacy based Pruning (Sec. 5).
We propose to apply α-indistinguishability
as a metric to quantify the client-side pri-
vacy requirement. On this basis, we design
pruning strategies that reduce the server-side
dataset for further processing while ensuring
the α-indistinguishability of the client. This
module is the core that detaches the server-
side data size from execution time, which no-
tably improves the efficiency of unbalanced
entity alignment.

• Encryption based Verification (Sec. 6). We
propose a homomorphic encryption based ver-
ification procedure upon the pruned Bucket-
ESF index. It returns the entity alignment
result to the client without revealing any ex-
tra information to either party. We also pro-
pose compression techniques to reduce the
encryption overhead.

4 Secure Index Construction

As a prerequisite for α-ESF framework, the server
constructs a PSI-oriented index of its billion scale
dataset, called Bucket-ESF. To ensure data secu-
rity, the index construction relies on a homomor-
phic encryption scheme, named Paillier Encryption.
In the following, we first introduce the preliminary
of Paillier Encryption and then elaborate on our
Bucket-ESF index.



6

4.1 Preliminary: Paillier Encryption

Paillier [19] is a partially homomorphic encryp-
tion scheme, which allows efficient secure compu-
tations over encrypted data. Given a plaintext u,
E(u) is used to denote its ciphertext by Paillier en-
cryption. As next, we introduce the functionalities
of Paillier encryption and refer to [20] for detailed
implementation.

• The Paillier encryption supports an addition
between two ciphertexts E(u1) and E(u2), i.e.,
E(u1 + u2) = E(u1) ⊕ E(u2), where ⊕ denotes
the homomorphic addition operation.

• The Paillier encryption supports a multipli-
cation between a ciphertext E(u1) and a plain-
text u2, i.e., E(u1 · u2) = E(u1)u2 .

Paillier encryption has been proved and demon-
strated to guarantee semantic security [20], i.e., for
a given ciphertext, an attacker cannot deduce any
sensitive information about the plaintext.

In our framework, the public key of Paillier, which
is shared between the client and server, is used in
the encryption and secure computations. By con-
trast, Paillier’s private key, which is held by the
server only, is used to perform decryption.

4.2 Bucket-ESF Index

As shown in Fig. 3, the Bucket-ESF index is a two-
level structure. It enables a fast search over cipher-
texts while complying with the privacy constraints.
The first level of Bucket-ESF partitions the server-
side entire dataset into |B| buckets and the elements
inside each bucket are determined by a hash func-
tion Hb : X → B. The second level of Bucket-
ESF is an encrypted data structure, called EncSum
Filter, which supports fast and secure membership
test. As next, we introduce the details of EncSum

ℋ1=0 ℋ2=2 ℋ3=4

Server-side dataset

Bucket[1] Bucket[|B|]Bucket[772]… …

…

Buckets

EncSum Filters

Partition dataset
into buckets

Encrypt elements 
into filters

… 12353 12357 12361 12365 …

12353 12357 12361 12365

3025 … 4331 … 4997 …

Paillier Encryption

ℰ(3025) ℰ(… ) ℰ(4331) ℰ(… ) ℰ(4997) ℰ(… )

ESF772

Bucket[772]
Construction of EncSum Filter ESF772

Hash function ℋ3

Hash function ℋ1 Hash function ℋ2

…

… …

ESF|B|ESF1 ESF772

s.t. ESF 0 ⊕ ESF[2] ⊕ ESF 4 = ℰ(12353)

s.t. 3025+4331+4997
=12353

Hash function ℋ𝑏𝑏

Level 1

Level 2

Fig. 3 Two-level structure of Bucket-ESF index.

Filter and illustrate the construction of Bucket-ESF
index.

EncSum Filter. Our EncSum Filter is defined by
an array ESF[1..N] and several hash functionsH1,

H2,H3 (since our results show three hash functions
is enough to process billion-scale dataset, we as-
sume three hash functions here). For a given el-
ement u, the EncSum Filter stores the Paillier ci-
phertext E(u) into the array ESF according to the
values of functions H1 to H3. Specifically, E(u) is
defined as

E(u) =
3⊕

z=1

ESF[Hz(u)]. (1)

where ⊕ is the Paillier’s addition operator. Given a
set of elements {u1, · · · , un}, the EncSum Filter can
be built as follows.

• We initialize the array ESF[1..N] as null (⊥).

• We find appropriate hash functions H1, H2,
H3 until each element ui can be successfully
divided and inserted into ESF while satis-
fying the condition in Eq. (1). Specifically,
the H1,H2,H3 are first randomly generated
from a family of hash functions. Then a topo-
logical sort is used to check whether all ele-
ments can be inserted into ESF successfully.
If not, the hash functions will be regenerated
randomly until the check becomes true.
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Algorithm 1: Secure Index Construction
Input: Private set DS, bucket set B
Output: The Bucket-ESF index

1 Choose a hash functionHb : X → B randomly
2 Initialize Bucket[t]← ∅ for all buckets t ∈ B
3 foreach element si ∈ DS do
4 Bucket[Hb(si)]← Bucket[Hb(si)] ∪ {si}

5 foreach bucket t ∈ B do
6 ESFt ← build EncSum Filter for Bucket[t]

7 return the 1st levelHb and the 2nd level {ESFt}

• For any remaining ESF[ j] =⊥ after insert-
ing all elements, we replace ESF[ j] with a
randomly chosen Paillier ciphertext.

It has been proven that, when n is large, we can
find such hash functions with probabilityΩ(1) [21].
Our experimental study shows that, if we set the
size N of EncSum Filter to 1.23n + 64, where n is
the number of elements in the server-side dataset,
the probability of successful construction is nearly
100%. It is better than the traditional membership
test data structures such as Bloom Filter, which re-
quires 20 hash functions and N = 28.8n memory
cost to achieve the same rate of successful con-
struction [22].

Index Construction. Alg. 1 shows the construc-
tion of the Bucket-ESF index. At the first level
of Bucket-ESF index, a hash function Hb : X →
B is randomly chosen by the server, which parti-
tions the whole server-side dataset into |B| buckets.
Each element si held by the server is assigned to
the Hb(si)-th bucket. The server then constructs
the EncSum Filter ESFt for the elements in each
bucket t ∈ B as the second level of Bucket-ESF in-
dex. Finally, the bucket hash function Hb and the
EncSum Filters {ESF1, · · · ,ESF|B|} are assembled
as the Bucket-ESF index.

Complexity Analysis. In Alg. 1, the server takes
O(nS) time to partition its dataset into |B| buckets
(lines 2-4). The construction of all EncSum Filters
(lines 5-6) also takes O(nS) time. Thus, the total
time complexity is O(nS). The memory cost of the
index is also O(nS). Note that the Bucket-ESF in-
dex construction is a one-off effort, which means
its time cost is independent of entity alignment re-
sponse.

5 Asymmetric Privacy based Pruning

This section introduces α-indistinguishability, a met-
ric to quantify client-side privacy (i.e., asymmetric
privacy) requirement, and then proposes our prun-
ing strategies based on this metric.

5.1 α-indistinguishability: Metric for Client-side
Privacy Requirement

The asymmetric privacy in the entity alignment prob-
lem enables the trade off between privacy and ef-
ficiency. For example, the client can achieve more
efficient entity alignment response by selecting their
preferred privacy requirement. Intuitively, the first
question is how to define the privacy requirement
of the client-side in entity alignment.

In our work, the client-side privacy requirement
can be measured by the probability that whether an
element is in the client-side dataset from the server-
side view [23, 24]. Specifically, from the server-
side view, if the probability that a server’s element
s appears in the client-side dataset DC is not greater
than 1/α, where the client-defined parameter α de-
notes the privacy preservation level, then the pri-
vacy of this client can still be protected. For ex-
ample, by setting α = 104, the server can only in-
fer whether an element belongs to the client-side
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dataset with a probability 0.01%, which is accept-
able in many real-life applications like identity ver-
ification for risk control [18]. Accordingly, we pro-
pose a metric called α-indistinguishability, which
is formally defined as follows.

Definition 2 (α-Indistinguishability). Given a pri-
vate dataset DC held by a client C, it is α-indisting-
uishable for the server S if:

∀s ∈ DS,Pr(s ∈ DC) ≤
1
α
. (2)

This metric performs an easy configuration mech-
anism for the client to achieve controllable privacy
leakage in entity alignment by setting the parame-
ter α. For example, in the scenario of federated user
recommendation, a financial company can achieve
α = 104 indistinguishability by hiding the internal
4 digits of the debtors’ phone numbers.

5.2 Pruning Strategies

By utilizing our Bucket-ESF index, we introduce
how to prune the billion-scale server-side dataset
while complying with the privacy requirement of
α-indistinguishability. In our secure index, each
bucket contains around R = |X|/|B| possible ele-
ments. Thus, for any client’s element c j ∈ DC,
the client can prune the server-side dataset with the
bucket Hb(c j) and another several obscured buck-
ets that are used to hide the true bucket, to make
sure the total number of possible elements in these
buckets are no smaller than α. In this way, the
pruning method can satisfy α-indistinguishability
for the client.

Basic Pruning. Alg. 2 illustrates the basic prun-
ing method. Specifically, the client first requests
the hash function Hb that is used by the server to
partition its dataset into buckets. Each client’s ele-
ment needs L = ⌈α/R⌉ buckets (of totally α possi-
ble elements) to satisfy the privacy requirement of

Algorithm 2: Pruning Strategy
Input: Private set DS and DC, the parameter α

and the Bucket-ESF index
Output: EncSum Filters {ESFpi} of the

Bucket-ESF index
1 Client C executes:
2 Get the hash functionHb of server’s

Bucket-ESF index
3 PrunES F ← ∅
4 R← |X|

|B| , L← ⌈αR⌉

5 foreach c j ∈ DC do
6 if Hb(c j) < PrunES F then
7 Randomly generate L − 1 distinct

dummy buckets d2, · · · , dL ∈ B
8 PrunES F ←

PrunES F ∪ {Hb(c j), d2, · · · , dL}

9 Send the pruned buckets PrunES F to server

10 Server S executes:
11 foreach pi ∈ PrunES F do
12 Send the pi-th pruned Filter ESFpi to

client C

α-indistinguishability, where those required buck-
ets are denoted by PrunES F (lines 3-4). Then, the
Hb(c j)-th bucket at the server-side may also con-
tain the element c j in the client-side dataset. Thus,
those buckets should be included in the candidate
set PrunES F (lines 5-6). Moreover, for each client’s
element, another L− 1 obscured bucket IDs will be
added to the candidates to preserve the client’s pri-
vacy (lines 7-8). Finally, the client sends all the
candidate bucket IDs to the server to request the
corresponding EncSum Filters at the server side
(lines 9-12). Overall, this algorithm takes O(nC · L)
time, and the total communication cost is bounded
by the total size of the requested EncSum Filters,
O(nC · L · R) = O(nC · α).
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Overhead Optimized Pruning. Next, we discuss
how to tune the parameters L and R to achieve the
optimized pruning overhead. The key insight is
that, after the client receives EncSum Filters which
are in a serialization form, it also needs to deserial-
ize the EncSum Filters containing elements in DC.
Thus, the time cost of deserialization is O(nC · R)
and the communication cost of sending the bucket
numbers (line 9) is O(nC · L). Denote the time
for communicating one bit as Tc and the time for
deserializing one bit as Td, the total overhead is
O(Tc · nC · L + Td · nC · R). Due to L · R = α, the
optimized pruning overhead can be achieved when

L =

√
Td · α

Tc
, R =

√
Tc · α

Td
. (3)

Under this condition, the time complexity is O(
√
α·

nC). To achieve such optimized pruning, the server
can build the Bucket-ESF index with the bucket
size defined in Eq. (4) based on the pre-defined pa-
rameter α, communication cost and deserialization
cost (per bit),

|B| = |X| ·

√
Td

Tc · α
. (4)

Theorem 1. The asymmetric privacy based prun-
ing (Alg. 2) can meet the privacy requirement of
client, i.e., α-indistinguishability.

Proof. From the view of the server, it only obtains
the candidate bucket set PrunES F sent by the client.
Firstly, the server can detect whether a bucket in
the candidate set contains an actual element of the
client with a probability 1/L. Secondly, each bucket
has R = |X|/|B| possible elements, so the possibil-
ity of correctly detecting the client’s element in a
certain bucket is 1/R. Since L = ⌈α/R⌉, the prob-
ability that the server can infer whether an element
s is in DC is bounded by

Pr(s ∈ DC) =
1
L
·

1
R
=

1
⌈α/R⌉ · R

≤
1
α
. (5)
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Server

Line 12

𝑃𝑃𝑃𝑃𝑟𝑟𝑃𝑃𝑖𝑖

20530
21345

Server

Line 17

𝑃𝑃𝑃𝑃𝑟𝑟𝑃𝑃𝑖𝑖

21345
20530

Send to 
Client & 
Reshuffle

𝑟𝑟𝑖𝑖
21345
20532

→
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖
ℰ(20530)
ℰ(21345)

→

Decrypt

=→

PSI Result

𝑟𝑟𝑃𝑃𝑟𝑟
12353

≠

𝑐𝑐𝑖𝑖
12353 (Yes)
12363 (No)

Line 18

→

Fig. 4 Example of encryption based verification.

□

6 Encryption based Verification

After the client receives the EncSum Filters, this
section presents how to correctly and efficiently achieve
the entity alignment between server and client.

The entity alignment is now conducted on the
client-side dataset DC and the received EncSum Fil-
ters {ESFpi}. For each element c j, the client needs
to test whether c j exists in the Hb(c j)-th EncSum
Filter. Specifically, the ciphertext stored in the Enc-
Sum Filter is

h j =

3⊕
z=1

ESFHb(c j)[Hz(c j)]. (6)

The client needs to test whether the value of h j

defined in Eq. (6) is the corresponding ciphertext
of c j. Since only the server holds the private key
that can perform decryption, the client can add the
ciphertext E(−c j) to h j by utilizing the homomor-
phic property of Paillier encryption, and hand over
the decryption to the server.

Algorithm Details and Analysis. Alg. 3 illustrates
the procedure of our encryption based verification.
For each client-side element c j, the corresponding
ciphertext from server h j is extracted from the Enc-
Sum Filters ESFHb(c j) (line 4). To avoid the server
inferring extra information about c j, the client can
add another randomly chosen value r j to c j and
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Algorithm 3: Verification Workflow
Input: Private set Dc, pruned EncSum Filters

ESFpi

Output: The private set intersection res
1 Client C executes:
2 Initialize an array cand[1..nC]
3 for j← 1 to nC do
4 h j ← ⊕

3
z=1ES FHb(c j)[Hz(c j)]

5 r j ← a randomly chosen integer
6 cand[ j]← h j ⊕ E(r j − c j)

7 Generate a random permutation π
8 Shuffle cand by π and send it to the server

9 Server S executes:
10 Initialize perm as an array of [1..|cand|]
11 for i← 1 to |cand| do
12 perm[i]← Paillier.decrypt(cand[i])

13 send perm to client

14 Client C executes:
15 res← ∅
16 for j← 1 to |perm| do
17 if perm[ j] = rπ( j) then
18 res← res ∪ {cπ( j)}

compute the h j⊕E(r j − c j) (lines 5-6). It then shuf-
fles the ciphertexts by a random permutation π to
protect the original order (line 8). These steps exe-
cuted by the client take O(nC) time. The server only
needs to decrypt the ciphertext cand[ j] and returns
the corresponding plaintext perm[ j] to the client,
which also takes O(nC) time (lines 9-13). Finally,
the client can check whether perm[ j] equals rπ( j).
Since cand[ j] = hπ( j) ⊕ E(rπ( j) − cπ( j)), perm[ j] =
rπ( j) implies that hπ( j) is the ciphertext of cπ( j), which
means cπ( j) is in the entity alignment result. Fig. 4
is an illustration of our encryption based verifica-
tion. In summary, the total time complexity and
communication cost are O(nC), which are only de-

termined by the size of the client-side dataset. No-
tice that the time complexity of our solution is no-
tably lower than that of the state-of-the-arts [13,15,
16], i.e., O(nS + nC) = O(nS) in the unbalanced PSI
based solutions.

Ciphertext Compression based Optimization. The
encryption based verification (Alg. 3) can be fur-
ther accelerated by our compression technique. In
practice, the security parameter κ of Paillier en-
cryption is often at least 512 bits, which means we
can concatenate multi-integers as one to perform
encryption and decryption together. For example,
we can represent each encrypted element in X into
a 50-bit integer, i.e., we can compress 10 elements
into a big integer to process Paillier’s encryption
and computation. With such a compression tech-
nique, the computation and communication cost of
the verification phase can be significantly reduced.

Theorem 2. Our α-ESF framework (Alg. 2 and
Alg. 3) can securely align the entities under the
semi-honest model.

Proof. The security of our entity alignment solu-
tion (Alg. 2 and Alg. 3) depends on the underlying
encryption scheme. For the client’s view, it only
obtains the ciphertext h j from the EncSum Filters
and the decrypted result about c j. Since the encryp-
tion scheme Paillier is semantically secure [20], the
ciphertexts h j and the plaintext data from the server
si are indistinguishable. Thus, the client cannot
learn any information about the server except for
the query answer (i.e., the intersection set). For the
server’s view, it can get the pruned bucket IDs in
Alg. 2 and the decrypted set {sπ( j) − cπ( j) + rπ( j)} in
Alg. 3. Since the server cannot get the random per-
mutation π and variable r, it can learn neither the
element ci nor the intersection size. And the secu-
rity of bucket IDs is guaranteed by α-indistinguish-



11

ability (Theorem 1). Thus, the α-ESF is secure un-
der the semi-honest adversary model. □

7 Experimental Study

This section presents the evaluations of our entity
alignment solution α-ESF.

7.1 Experiment Setup

Datasets. We evaluate our solutions on real and
synthetic datasets.

• Mobile Telecom Operator (MTO). It is the
operating data from a leading mobile tele-
com operator in China, which contains 1.08
billion identities (e.g., 11-digit phone num-
bers) from 31 provinces (server-side) and an
identity verification query request with 226
records (client-side). To simulate real-world
entity alignment scenario, we vary the size of
client-side dataset from 1 to 200 by random
sampling and denote the corresponding real
datasets as MTO#1, MTO#50, MTO#100 and
MTO#200, respectively.

• Synthetic Datasets (SYN). For the scalabil-
ity test, We randomly generate synthetic data-
sets as well. In SYN, we vary the size of the
server-side data from 50 million to 5 billion
and the size of the client-side data from one
to ten thousand. Each element in the datasets
is an 11-digit integer.

Baselines. We compare our α-ESF with existing
balanced PSI based solutions (KKRT [13], CM [14],
EC-DH [25] and PaXoS [26]) and unbalanced PSI
based solutions (SpOT [16] and CLR [15]). The
details are as follows.

• KKRT [13]. It is one of the state-of-the-art
entity alignment solution with balanced PSI

techniques implemented with a novel oblivi-
ous pseudo-random function.

• CM [14]. It is one of the state-of-the-art en-
tity alignment solutions with balanced PSI
techniques which balances the network traf-
fic and computation overhead.

• ECDH [25]. It is a frequently-used entity
alignment solution in industry [27,28], which
is based on the classic Diffie–Hellman key
exchange.

• PaXoS [26]. It utilizes a new oblivious key-
value store called probe-and-XOR of strings
for entity alignment.

• SpOT [16]. It is one of the state-of-the-art
entity alignment solution based on unbalanced
PSI that applies sparse OT for low communi-
cation cost.

• CLR [15]. It is one of the state-of-the-art en-
tity alignment solution based on unbalanced
PSI. It is designed to reduce communication
cost based on fully homomorphic encryption.

Evaluation Metrics. In the experimental study, we
mainly focus on the efficiency of different entity
alignment solutions, which is assessed by the run-
ning time, i.e., total time to perform entity align-
ment (the time to pre-construct the Bucket-ESF in-
dex is excluded). Besides, we also measure the
communication cost of the compared solutions.

Implementation. We conduct all experiments on
two machines, one as the server and the other as the
client. Both the server and client have 24 2.40GHz
Intel(R) Xeon(R) Gold 6240R CPU processors and
1TB memory with Centos 7.9 OS. The network
bandwidth between these machines is up to 10Gbps.
All the algorithms are implemented by GNU C++
with NTL library [29] for big integer computation
and CryptoTools library [30] for network connec-
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Table 1 The running time and communication cost on billion-scale mobile telecom operation (MTO) datasets. We mark
the “best performance” as green . “N.A.” denotes the solutions are crashed or time out in experiments.

Dataset
Running Time (Sec) Communication Cost (MB)

KKRT CM ECDH PaXoS SpOT CLR Ours KKRT CM ECDH PaXoS SpOT CLR Ours

MTO#1 2033 22547 N.A. N.A. 6273 2503 0.01 78643 96656 N.A. N.A. 6266 3591 1.74

MTO#50 2056 22711 N.A. N.A. 6318 2503 0.18 78643 96656 N.A. N.A. 6266 3591 86.3

MTO#100 2082 22933 N.A. N.A. 6814 2504 0.38 78643 96656 N.A. N.A. 6266 3591 173

MTO#200 2112 23284 N.A. N.A. 6917 2504 0.70 78643 96656 N.A. N.A. 7311 3591 344
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Fig. 5 Experimental results of varying α on real datasets. Note that ECDH and PaXoS fail to terminate on billion-scale data.

tion. The key size of Paillier encryption is κ = 512
bits.

7.2 Results on Billion-Scale Mobile Telecom Op-
erator Datasets

For real-life efficiency evaluation, we deploy the
compared algorithms on a leading mobile telecom
operator in China, which holds 1.08 billion records
of users’ phone numbers from 31 provinces. Fol-
lowing the identity verification applications [17],
we set the client-side privacy requirement α as 104.
The construction of the Bucket-ESF index in our α-
ESF solution takes 2.9 hours with 164 GB memory
cost. We demonstrate the efficiency of our solu-
tion from two perspectives: (i) overall performance
compared to baselines, and (ii) performance under
different privacy requirements of the client.

Overall Performance. Table 1 lists the running

time and communication cost of all compared al-
gorithms on the mobile telecom operator datasets.
We can make the following observations. (i) Our
α-ESF is 3 to 6 orders of magnitude faster than
the baselines in running time over billion-scale
server-side dataset. Take dataset MTO#200 as a
example. our α-ESF is 9880×, 3016×, 3576× and
33262× faster than SpOT, KKRT, CLR and CM,
respectively. The running time of α-ESF is always
less than 1 second, while other baselines take more
than 30 minutes for entity alignment. It is because
their time cost is mainly determined by the billion-
scale of the server-side dataset. PaXoS is crashed
and ECDH cannot terminate in 12 hours during our
experiments. (ii) Our α-ESF also outperforms
the baselines in the communication cost. The
communication cost of baselines is between 3.5GB
and 94.4GB. Existing balanced PSI based solutions
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(KKRT and CM) take the highest communication
cost, because they require encoding and sending all
the billion-scale records to the client. Prior unbal-
anced PSI based solutions (SpOT and CLR) achieve
relatively better communication cost due to their
specialized optimizations for communication. By
contrast, the communication overhead of our α-ESF
framework mildly increases with the expansion of
the client-side data size.

Performance under Different Privacy Require-
ments α. We further vary the client-side privacy
requirement from 100 to 1 million to evaluate the
performance of our α-ESF solutions. As shown in
Fig. 5, our α-ESF still notably outperforms all the
baselines in running time. Take MTO#200 as an
example. As α increases, the running time of α-
ESF increases slightly (from 0.05s to 15.1s). When
the client-side privacy requirement is α = 106, our
α-ESF is still 134× faster than the runner-up so-
lution (KKRT). The communication cost of α-ESF
is relatively sensitive to the privacy requirements.
Specifically, 102-ESF is 1240×, 710×, 15572× and
19139× lower than SpOT, CLR, KKRT and CM
respectively. The 106-ESF takes similar communi-
cation cost to the baselines, SpOT and CLR. This is
because our solution needs to transmit more Enc-
Sum Filters from the server to the client as α in-
creases, which leads to the increase of communi-
cation overhead.

Performance on Effectiveness. Fig. 6 show the
model performance of vertical federated learning
with our data alignment solution. To simulate the
real world applications, we perform the federated
training among the server and three clients. We can
find that, by involving the server-side data based on
our entity alignment solution, the performances of
all clients and the federated model increase signif-
icantly. The accuracy gain of the entity alignment
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Client-only With-server

Fig. 6 Model performance with entity alignment solution.

based federated learning is up to 3.93%, which demon-
strates the effectiveness of the entity alignment in
federated learning.

7.3 Scalability Test on Synthetic Datasets

This subsection conducts the scalability test on data-
sets SYN and evaluates the impacts of different data
scales. For default parameters, we set the server-
side data size nS as 1 billion, the client-side data
size as 100, and the client-side privacy requirement
α as 104.

Varying size of sever-side data nS. Fig. 7a presents
the results of varying nS. In terms of running time,
our α-ESF outperforms all compared baselines and
KKRT is the runner-up. During the test, KKRT
is up to 13436× slower than our α-ESF. When nS
is more than 50 million, PaXoS and ECDH are
crashed or timed out, respectively. As nS increases,
other baselines become inefficient because their time
complexities are determined by nS. The running
time of α-ESF remains stable because its time com-
plexity is mainly determined by nC. As for commu-
nication overhead, our α-ESF is not affected by nS
and performs the best at billion scale. By contrast,
the communication cost of baselines linearly grows
as nS increases.

Varying size of client-side data nC. As shown in
Fig. 7b, the running time and communication cost
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Fig. 7 Scalability test on synthetic datasets (SYN).

of α-ESF are linear to nC. Prior solutions perform
stable because they need to encode and transmit all
server-side data to the client. Our α-ESF still dom-
inates all baselines in running time. Specifically,
α-ESF is at least 396×, 113×, 136× and 1252×
faster than SpOT, KKRT, CLR and CM, respec-
tively. When nC = 104, the communication cost of
α-ESF is slightly higher than SpOT and CLR, but
it only takes a small part of the overall efficiency
overhead. Overall, it indicates that our α-ESF is
more suitable for the unbalanced scenario.

8 Related Work

Entity alignment, as a fundamental pre-processing
step in federated learning, has been studied in both
the artificial intelligence and database committee.
[31–37]. However, most of these studies assume
that the data is insensitive for the service provider
and hence needs no privacy protection. Recently,
private set intersection (PSI) attracts widespread
attention in entity alignment problem, since data
privacy is becoming more important than ever. In
the following, we review existing solutions to en-
tity alignment from two categories: balanced PSI
based solutions and unbalanced PSI based solu-
tions. Approximate PSI query [23, 38, 39] is out of
our scope because we focus on applications such as
identity verification that require accurate results.

Balanced PSI based Entity Alignment Solutions.
As one of the earliest studies on PSI, ECDH [25]
is an easy-to-implement solution to balanced PSI
based on the Diffie-Hellman key exchange [20].
However, its computation overhead can be prohibitive
on large-scale datasets [12]. State-of-the-art bal-
anced PSI solutions are designed based on oblivi-
ous transfer (OT) techniques [13,14,26,40]. Specif-
ically, Kolesnikov et al. [13] propose a novel obliv-
ious pseudo-random function based solution. PaXoS
[26] and CM [14] further optimize the performance
of balanced PSI in some specific settings. How-
ever, the performance of their solutions is not satis-
factory under billion-scale dataset unbalance based
on our experiments.

Unbalanced PSI based Entity Alignment Solu-
tions. Most unbalanced PSI solutions rely on ho-
momorphic encryption techniques. Freedman et al.
[41] propose an unbalanced PSI solution with a
partially homomorphic encryption scheme. Subse-
quently, Chen et al. [15] propose a communication-
efficient unbalanced PSI solution by leveraging a
fully homomorphic encryption scheme. SpOT [16]
is a new OT based solution to unbalanced PSI with
low communication cost. Kales et al. [42] con-
struct an two phase unbalanced PSI solutions against
malicious attackers in mobile device, where clients
download a large cuckoo filter in the setup phase
and then execute private set intersection. However,
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if the server holds a set with billion elements, the
client needs to download a large filter making such
solution impractical [42]. In summary, existing so-
lutions to unbalanced PSI mainly focus on reduc-
ing the communication cost, while the computation
overhead can become the efficiency bottleneck in
real-life applications.

9 Conclusion

In this paper, we explored the entity alignment prob-
lem in federated learning. Existing solutions are
inefficient in case of extreme dataset unbalance be-
cause they require encoding on a billion-scale server-
side dataset. In response, we propose α-ESF, an
efficient entity alignment algorithm catered for ex-
treme dataset unbalance. It is featured with two
core techniques: α-indistinguishability-based server-
side dataset pruning, and a novel PSI-oriented in-
dex for rapid search on server-side encryption. Un-
like prior arts whose efficiency is restricted by the
billion-scale server-side data size, the time com-
plexity of our solution is mainly determined by the
small-scale client-side data size. Extensive exper-
iments show that our α-ESF is at least 2 orders of
magnitude faster than prior arts in case of billion-
scale dataset unbalance. We envision our work as
a leap toward practical production federated learn-
ing.
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