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Current Problem: The rise of on-device deep learning (DL) in resource-limited mobile and
embedded devices has stimulated various applications. However, existing on-device DL mostly
relies on predefined processing patterns for reacting to given input data, resulting in accuracy

and resource efficiency bottlenecks.
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Our thoughts:

v DeepSwarm incorporates proactive data

acquisition and processing with bi-directional
optimization to minimize redundancy and
enhance resource efficiency.

It promptly addresses data limitations and
redundancy through DL feedback,
capitalizing on the complementary and
asynchronous nature of data for scalable
processing.
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DeepSwarm for Swarm DL Adaptation:Compared with the original model of the mobile model, DeepSwarm
has improved the average accuracy by more than 40%, and compared with the global model, it has improved by

9%.

Method Accuracy gain of Accuracy of mobile model Accuracy gain of
glohal model after adaptation mobile model
loll=0.5 loll = 0.50 ol =050
Mobile Mobile Maobile Averas Mobile Mobile Mobile Averas
model A | modelB | modelC | "Y*™E° | model A | model B | modelC | TVETEE
Domain adaptation Mone 0.5 0469 0.497 0.49 14.3% 48.9% 13.7% 234%
NestEvo without 1.3% 0504 | 0475 | 0501 | 0505 | 143% | 50.8% | 155% | 272%
data generation
Original 1. 3 13 1
mobile model None 0.441 0315 0.437 0.397 MNone
Only mobile : 403 y 1 A8 : 3 ga 23 g
model adaptation 0 0.50 0478 0.493 0.49] 13.6% 51.7% 12.8% 237%
NestEvo 9.13% 0.571 0.543 0.584 0.566 29.5% T2.4% 33.6% 426%

DeepSwarm for Asy nchronous Personalized FL: The results showed that DeepSwarm achieves a reduction of
up to $88.2%$ in convergence time, and an improvement of up to 46% in accuracy.
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