Abstract
resource-limited mobile and embedded devices has stimu-

The rise of on-device deep learning (DL) in

lated various applications. However, existing on-device DL
mostly relies on predefined processing patterns for reacting to
given input data, resulting in accuracy and resource efficiency
bottlenecks. In this work, we advocate a paradigm shift to-
wards Swarm DL, inspired by the collective intelligence ob-
served in swarms, where individual proactive actions drive
superior global performance. Harnessing the potential of
swarms formed by physically adjacent mobile and embed-
ded devices in IoT scenarios, we introduce DeepSwarm,
a closed-loop system framework aiming to push the per-
formance boundaries of on-device DL. In particular, Deep-
Swarm incorporates proactive data acquisition and process-
ing with bi-directional optimization to minimize redundancy
and enhance resource efficiency. It promptly addresses data
limitations and redundancy through DL feedback, capitaliz-
ing on the complementary and asynchronous nature of data
for scalable processing. Finally, we discuss research chal-
lenges and opportunities for enhancing DeepSwarm perfor-
mance and showcase two initial instances.
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1 Introduction

On-device deep learning (DL) on mobile and embedded IoT
devices has stimulated various applications [1]. Examples in-
clude health monitoring on smartphones and watches [2], im-
age recognition on robotics [3], and object classification on
drone swarms [4]. Executing advanced DL models on-device
can process local data efficiently, preserving privacy, en-
hancing responsiveness, and conserving network bandwidth.
However, existing on-device DL mostly relies on predefined
processing patterns for reacting to given input data, result-
ing in accuracy and resource efficiency bottlenecks. For ex-
ample, the redundancy or absence of input data poses chal-
lenges to DL-based data processing, thereby limiting overall
performance. It is difficult to provide feedback on the data
processing performance during the data acquisition stage, as
data processing typically occurs after data acquisition.
Harnessing the potential of swarms formed by physically
adjacent mobile and embedded devices in IoT scenarios, we
advocate a paradigm shift towards Swarm DL by drawing in-
spiration from swarm intelligence [5]. This shift entails mov-
ing from reactive on-device DL, which responds to given in-
put data, to proactive systems known as swarm deep learning

(swarm DL). Conceptually, swarm intelligence involves the
collective intelligent behavior of multiple agents, each acting
proactively based on simple patterns in a self-organized, self-
adaptive, self-evolved manner, leading to enhanced global
performance. Building upon on-device DL as the foundation,
Swarm DL proactively scales data acquisition and process-
ing and provides bi-directional optimization feedback for
them, forming a closed loop. This paradigm aims to max-
imize implicit complementarity and minimize redundancy in
both data acquisition and processing within the swarm, fos-
tering a more efficient and scalable IoT system. Specifically,
Swarm DL realizes swarm intelligence by leveraging IoT de-
vices equipped with advanced sensors and DL computing ca-
pabilities as proactive agents, embodying following visions:

e Proactive Data Acquisition for DL: Different from the
traditional paradigm where sensor data acquisition is
completed before data processing fixedly, Swarm DL
enables each IoT device to leverage runtime feedback
from DL-based data processing to address the ab-
sence and redundancy of data during data acquisi-
tion as soon as possible. Each device operates proac-
tively and locally, leveraging the local proxy of global
data distribution and limited resources, to enhance col-
laborative performance in a self-organized manner and
facilitate more accurate and efficient data acquisition.

e Proactive Data Processing by DL: To capitalize on the
complementary and asynchronism, i.e., system issue, of
acquired data, Swarm DL proactively scales up/down
on-device DL model sub-structures and underlying sys-
tem configurations. This local adaptation optimizes

global performance (e.g., accuracy, latency, energy cost,
memory usage), with awareness of dynamic resource
availability over the swarm. Also, unlike solely exe-
cuting on-device DL, proactive swarm agents possess
greater adaptability to non-stationary mobile envi-
ronments with data drifts via active learning.

Despite extensive research on on-device DL inference
[6] and adaptation [7], extending them to incorporate bio-
direction optimization of data acquisition and processing
presents challenges. Two complexities reside:

e From independent optimization of data acquisition &
processing to bi-directional optimization. It requires on-
line profiling of data importance in modality and sam-
ples before exactly executing data processing on each
device. It involves incorporating data dynamics among
the swarm. Specifically, existing on-device data im-
portance assessment methods only evaluate explicit im-
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Fig. 1: DeepSwarm integrates swarm intelligence into the on-device deep learning (DL) to enable proactive data acquisition
and processing at resource-scarce agents while satisfying global application demands.

portance through distribution or entropy comparisons.
They cannot handle implicit complementarity, influ-
enced by distributed and dynamic factors like data asyn-
chronism, cross-modal mutual information transferabil-
ity, and associated latency costs for fusion
e From reactive data processing to proactive data acqui-
sition and processing. Despite prior efforts in data-
reactive on-device DL algorithm-system codesign, the
optimization scope for proactive swarm devices needs
refinement [38]. Decentralized constraints, such as
processing from partial information and distributed re-
sources, exacerbate optimization difficulties in swarm
DL. Additionally, collaboration among individual IoT
devices introduces new challenges for data acquisition
association and computation optimization in swarm DL.
In a distributed setting, the optimal matching of data ac-
quisition (producers) and data processing (consumers)
further complicates the optimization scope.

To handle these problems in practical IoT environments,
we propose a generic system framework, named DeepSwarm.
We define modular design for DeepSwarm and identify opti-
mization opportunities and techniques to deploy swarm DL
on resource-limited and decentralized mobile and embedded
platforms. DeepSwarm pinpoints a set of proactive strategies
inter- and intra-devices that contribute to a self-organized,
self-adaptive, and self-evolving swarm DL system. Our main
contributions are as follows.

e We present the concept of swarm DL, a new vision of
DL system that integrates swarm intelligence into a net-
work of DL-enbaled devices for proactive data acquisi-
tion and processing with bio-directional optimization.

e We propose DeepSwarm, a generic system framework to
swarm DL. It decouples the concept of swarm DL into
functional modules and highlight the challenges, oppor-
tunities, and strategies in designing each module upon

prior reactive on-device DL techniques.

e We showcase two preliminary instances of DeepSwarm
for practical IoT applications with on-device DL infer-
ence and adaptation to showcase its performance bene-
fits in terms of accuracy and resource efficiency.

2 Scope and Framework

In this section, we introduce Swarm DL and a general frame-
work, DeepSwarm, comprising two functional modules.

2.1 The Concept of Swarm DL

As mentioned above, Swarm DL extends reactive on-device
DL, which focuses on resource-efficient DL given input data
on individual IoT devices, to a distributed setting inspired
by proactive swarm intelligence. Unlike other researches,
Swarm DL has unique characteristics of self-organized, self-
adaptive, and self-evolving. Specifically, Swarm DL adheres
to a bottom-up organization, where each agent can decide
whether to participate in cluster computing and evolve their
own models based on heterogeneous data to adapt to more
complex and diverse scenarios.

2.2 Swarm DL vs. Related Concepts

In current research, there are many related concepts that can
easily cause confusion with Swarm DL, such as swarm in-
telligence, on device DL, distributed DL offloading, feder-
ated Learning, crowd Sensing, and so on. However, Swarm
DL differs significantly from these concepts in essence. As
shown in Fig. 2, we begin by comparing Swarm DL with
other concepts, highlighting the unique characteristics.

o Swarm DL vs. Swarm Intelligence.
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Fig. 2: Comparison of swarm DL and related concepts.

Swarm DL vs. On-device DL. In traditional on-device
DL systems, inference constitutes the primary function,
with minimal or negligible on-device adaptation, partic-
ularly when embedded devices are customized for spe-
cific inference tasks. For example, Lin [116] proposed
a system, which can run DL model under a memory
limit of 256kb. However, this compression and modifi-
cation of the model is passively accepted by the device.
In contrast, each agent in Swarm DL exhibits greater
proactivity, engaging in both on-device DL inference
and adaptation, with a higher proportion dedicated
to adaptation. Consequently, balancing resource allo-
cation for DL inference and adaptation becomes a novel
challenge in this new context.

Swarm DL vs. Distributed DL offloading. Distributed
DL offloading primarily involves top-down task par-
titioning and offloading to multiple devices, as high-
lighted in existing literature [29-31]. Swarm DL em-
phasizes the bottom-up emergence of collective behav-
iors among devices. In other words, in swarm DL, each
agent achieves dynamic optimization of global system
performance and resource efficiency by proactively ini-
tiating local operations and adjustments, rather than
centralized analysis, for data acquisition and processing.
Swarm DL vs. Federated Learning. Federated Learn-
ing (FL) is a kind of data processing paradigm. FL
on embedded devices can boost data-driven DL train-
ing/adaptation efficiency given input data [32-34].
Swarm DL concentrates on the joint optimization span-
ning data acquisition and processing.

Swarm DL vs. Crowd Sensing. Crowdsensing encom-
passes two categories: active and passive, depending
on human participation [109]. Tasks can be assigned

top-to-down based on location, tasks, or social networks
to personal devices and infrastructure. It includes both
real-time as well as offline data processing. In contrast,
Swarm DL is a real-time, human-independent system
composed of autonomous mobile & embedded devices
(e.g., smartphones and robots) that proactively acquire,
process, and learn from data.

e Swarm DL vs. Distributed multi-modal data fusion. Dis-
tributed multi-modal data fusion focuses on integrating
data from multiple sensing sources to enhance data effi-
ciency [110], which is a many-to-one mode. In contrast,
swarm DL proactively optimizes both data acquisition
(supply) and processing (demand) at each device using
bi-directional feedback with many-to-many mode.

In summary, Swarm DL empowers both proactive data ac-
quisition for DL and data processing by DL with a closed sys-
tem loop, enabling the resource-efficient DL system across a
network of AIoT devices. This paradigm pushes the upper
bound of the tradeoff between performance and resource ef-
ficiency beyond that of individual phases or devices set.

2.3 The DeepSwarm Framework

To realize the vision of swarm DL, we present a generic sys-
tem framework, named DeepSwarm (see Fig. 3). It func-
tions with heterogeneous AloT hardware (e.g., CPU, GPU,
or MCU-equipped embedded devices), adapts to dynamic ap-
plication contexts (i.e., data distribution drifts and runtime re-
source availability), and generalizes to various AloT applica-
tions (e.g., mobile health, smart homes, autonomous vehicles,
industrial automation).

DeepSwarm takes a modular design and decomposes the
requirements of the swarm DL into two functional mod-
ules: proactive swarm data acquisition for DL and proactive
swarm data processing by DL. These two modules work in
synergy with bi-directional feedback to optimize the system
performance (e.g., accuracy, latency) and resource efficiency
(energy efficiency, memory fragmentation). We briefly ex-
plain the scope and characteristics of the two modules below.

e Proactive data acquisition module leverages sensor-
rich, resource-constrained AloT devices as agents to
form a self-organized swarm for efficient data acqui-
sition, which significantly enhances perception per-
formance and reduces redundancy among connected
agents. As depicted in Fig. 3, data acquisition in Deep-
Swarm should autonomously select and associate agents
and sensor modalities, and configure sensing parameters
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Fig. 3: Illustration of DeepSwarm, a generic system framework to realize bio-directional optimization of Swarm DL.

such as sampling rates to maximize fused data quality
with minimal overhead, such as communication and en-
ergy costs, based on data processing feedback.

e Proactive data processing module efficiently processes
acquired data in the form of DL tasks, including infer-
ence, training, and adaptation, to enable self-adaptive
and self-evolving swarm systems. Data processing in
DeepSwarm is expected to scale on-demand, in real-
time, with high resource efficiency.

The bi-directional optimization of two modules introduces
novel co-design opportunities among research threads on
swarm intelligence [43-45], on-device DL [24, 46, 47], and
distributed systems [29-31], as we will elaborate in Sec. 3.
We first briefly describe the functions of these modules next.

2.4 Proactive Swarm Data Acquisition Module

This module coordinates the self-organization of distributed
agents and sensors, drawing inspiration from swarm intelli-
gence. Each agent actively engages in data resampling, sens-
ing parameter adjustment, and association with other agents
by analyzing information extracted from cross-modal, cross-
task, and cross-clock sensor data, aiming to maximize fusion
quality and minimize redundancy of agent data. Addition-
ally, it aims to achieve complementary enhancement in the
early stage, addressing challenges such as modal informa-
tion loss, clock asynchrony, and heterogeneous data shifts.
The early stage refers to the initial phases of data generation,
pre-processing, streaming out, and processing. This mitigates

subsequent resource costs (e.g., sampling, computing, trans-
mission bandwidth) as early as possible. Specifically, we em-
phasize the simultaneous assessment of the explicit and im-
plicit importance of data on the performance of subsequent
data processing tasks at runtime.

o Explicit data importance profiling can be realized using
techniques such as data-/feature-level information com-
parison and historical fitting.

o Implicit data importance profiling depends on its com-
plementarity in the data acquisition phase across the
swarm system and the characteristics of subsequent pro-
cessing tasks. This includes asynchronous feature dis-
entangling, generation, and composition, slow data re-
purposing, heterogeneous data distribution clustering, as
well as spatio-temporal data reuse.

The explicit data importance estimation is data-driven and
has abundant existing works. While implicit data comple-
mentarity profiling is system-driven and non-trivial, requir-
ing a comprehensive consideration of dynamic system fac-
tors. We specify three main requirements essential to achieve
such swarm data acquisition.

2.4.1 Automated Association of Heterogeneous, Asyn-
chronous, and Asymmetric Sensing Sources

The distributed collaboration of data-rich sensors, such as
cameras, microphones, LIDAR, and RF imagers, across di-
verse agents, has facilitated high accuracy in complex en-
vironments like monitoring around corners [48], through



walls [49], in low light [28], and under foliage [50]. To
optimize overall sensing sensitivity and coverage within
resource-constrained AloT agents, we intend to minimize
data redundancy and leverage early-stage correlations among
sensor modalities and agents. However, practical implemen-
tation faces several challenges:

e Misaligned sampling rates can occur when sensor data
streams from different agents operate at different rates.
For example, one agent may capture videos at 60 frames
per second (fps), while another agent monitors the same
environment at 30 fps, causing misalignment problems.

o Incomplete real-time data can be from insufficient or
missing data in certain modalities, intermittent connec-
tivity, or malfunctioning sensors. For instance, in satel-
lite imaging, data gaps may arise due to the cyclical ro-
tation of the satellite during specific periods.

e Data asynchrony arises from significant differences in
data sizes among different modalities (e.g., video vs. au-
dio), leading to delays between streams due to wireless
dynamics. For instance, video data often surpasses au-
dio data in size [81]. Slow data streams may lead to
staleness issues, causing increased latency if blocked or
accuracy degradation if proceeding without waiting.

To tackle these challenges, efficient sensing source associ-
ation is desired. Various explorations can enhance the explicit
and implicit complementarity at the sensing source level:

e Precisely analyzing the correlations of raw data and dis-
entangling the transferability of extracted features by
computing an affinity matrix or constructing relationship
graphs [82].
ing can achieve data alignment of different modalities

This innovative multimodal preprocess-

before fusion, contributing to adaptive fusion strategies
that dynamically adjust integration based on real-time
context and relevance.

e Transforming irrelevant data into valuable assets, such
as repurposing data initially deemed irrelevant for Task
A to be valuable for Task B. Effective utilization of lag-
ging data streams, instead of directly discarding them, is
crucial, with efforts focused on minimizing the impact
of data staleness on accuracy.

o Achieving asynchronous complementarity involves effi-
ciently processing slow/fast and non-synchronized data
streams from multiple modalities, necessitating swift
decisions and adaptations. This entails two key aspects:
rapid and accurate performance prediction before exe-
cution and computation acceleration.

2.4.2 Context-adaptive Data Sampling

In a swarm of agents, adapting sampling strategies of se-
lected sensors to the dynamics and diversity of sensing tasks
is crucial for capturing necessary information without data
redundancy [51]. Implementing context-aware data sampling
involves acknowledging that not all classification categories
necessitate high-fidelity data across every modality. Obser-
vations suggest that only a limited number of categories are
sensitive to processing with partially missing data [19]. For
instance, when optimizing DL model adaptation tasks, the ac-
tive sample identification strategy for backward propagation
should consider two criteria: i) identifying reliable samples
for adaptation and ii) ensuring non-redundancy, especially
across modalities and tasks. For DL inference, duty-cycle
sampling for distributed swarm sensors extends battery life
by predicting potential correlations after global information
fusion from a long-range dependency perspective. This in-
volves locally executed sampling, followed by sensor shut-
down during idle periods or reduced sampling rates based on
complementarity and environment complexity [8].

2.4.3 Feedback-aware Data Acquisition

Adapting sensing source association and sampling should au-
tonomously respond to real-time data processing feedback,
utilizing local information without relying on global data
knowledge or exact processing results. These configura-
tions must swiftly adjust to changing sensor data streams and
application environments. Real-time performance estima-
tion feedback is essential for optimizing the data acquisition
pipeline. However, verifying the suitability of these strategies
for subsequent processing tasks is challenging without exact
execution. One approach, as seen in test-time adaptation,
involves an additional "re-forward" module following for-
ward and back-forward passes. The core challenge lies in ac-
curately and timely predicting data acquisition performance

without re-executing the entire data processing phase [83,84].

2.5 Proactive Swarm Data Processing Module

This module encompasses data processing tasks, including
DL inference and adaptation. Traditional on-device DL sys-
tems primarily focus on inference, with minimal on-device
adaptation, especially in customized embedded devices for
specific tasks. In contrast, Swarm DL agents exhibit higher
proactivity, engaging in both inference and adaptation, even
with a greater emphasis on adaptation. Consequently, bal-
ancing resource allocation for DL inference and adaptation



presents a novel challenge in this context. Specifically, the
primary objective in swarm DL is to perform data processing
tasks in a self-adaptive and self-evolutionary manner, akin
to general swarm intelligence. Unlike approaches focused
solely on optimizing DL algorithms, DeepSwarm also tack-
les system asynchrony in resource competition, varying re-
source availability among agents, managing peak memory
usage, and optimizing tradeoffs between system delay and
accuracy. We emphasize the following key requirements for
this module.

2.5.1 Self-adaptive DL Inference

To process sensor data in real-time under low and dynamic
resource budgets, we must adaptively compress and partition
DL inference workloads, balancing accuracy and resource ef-
ficiency. Innovative integration of model compression, parti-
tion, and offloading techniques is needed to scale up/down
DL inference workloads finely, at the operator, channel,
branch, and layer level. Despite algorithm advancements
in DL model compression or partition, they struggle to ad-
dress the dynamic nature of real-world deployment. Rec-
ognizing and accommodating these changes are crucial due
to varying performance demands influenced by time-varying
resource availability, inference frequency, and resource con-
The self-adaptive DL in-

ference process must operate retraining-free and cross-level

tention from other applications.

spanning DL model, computation graph, operator, and mem-
ory allocation to match the dynamic contexts.

2.5.2  Self-evolutionary DL Adaptation

In real-world AloT applications, live data drifts commonly
challenge the accuracy-resource efficiency balance estab-
lished by pre-trained DL models. Actively learning from new
data and adapting the parameters of deployed DL models us-
ing limited local computing resources from local and edge
agents is crucial. Parameter adaptation should be selectively
initiated upon detecting significant shifts and must be both
data- and resource-efficient to facilitate timely model adap-
tation to unforeseen sensor data and tasks. To maximize the
proportion of high-precision DL inference time to the entire
life cycle (including inference and adaptation time) for all
agents, an efficient mechanism is needed to support resource-
limited agents handling DL adaptation tasks. To realize this,
agents must accurately and swiftly estimate DL model accu-
racy drops locally without ground-truth labels to control the
size of retraining data and decide when to trigger model adap-
tation. Updating DL models to adapt to dynamic data distri-

butions is not an easy task, but real-time updates can allevi-
ate challenges such as limited new data, learning conflicts,
and accumulation of pseudo label errors [41]. DeepSwarm
also needs to balance limited computing/memory resources
among agents and address the competition between asyn-
chronous tasks initiated by different agents in a decentralized
manner. Additionally, addressing operator support issues for
DL training on specific embedded SoCs is crucial [42].

Note that we primarily focus on data processing. Ac-
counting for properties and constraints of data communi-
cation among agents (e.g., unreliable, or asynchronous) in
DeepSwarm is also beneficial, as we will discuss in Sec. 4.

3 Challenges and Opportunities

DeepSwarm relies on highly automated and closed-loop bi-
directional optimization, emphasizing interactions among the
environment, heterogeneous system components, and design
stacks. As shown in Fig. 4, unlike traditional research focus-
ing on separate optimization of data acquisition and process-
ing, the bi-directional optimization of these components en-
hances performance limits, balancing accuracy and resource
efficiency. By jointly optimizing swarm data acquisition and
processing, data can be accurately collected and processed,
maximizing swarm performance while minimizing redun-
dancy and resource costs. In IoT scenarios, each agent serves
as both the proactive data producer and consumer, leading to
intricate dynamic matching between them. New data process-
ing tasks constantly emerge, competing for swarm agents’
computing/memory resources, necessitating continuous re-
distribution of data and adjustments of DL model structures
and resource allocation to meet diverse application require-
ments such as accuracy, latency, and resource efficiency. Em-
bracing this co-design principle, we identify the following
challenges and opportunities:

3.1 Self-adaptive Non-blocking DL Inference

To strike a balance between inference accuracy and effi-
ciency, it is crucial to enhance complementarity and minimize
redundancy in data acquisition and processing.

3.1.1 Identifying Non-redundant Data Correlation

To identify minimal data requirements and non-redundant
data correlation, commonly used methods involve statisti-
cal analysis or divergence measures, such as correlation, mu-
tual information, variance, and relative importance, to assess
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the relationships between each modality and the target vari-
able [9]. However, existing approaches, aimed at ensuring
prediction precision, are often time-consuming or depend
on a complete global data distribution analysis. It is cru-
cial to further adapt these approaches for real-time and de-
centralized IoT scenarios with multiple distributed agents. As
shown in Fig. 5, in a distributed AIOT scenario, different de-
vices may bring heterogeneous data for non-blocking model
inference Moreover, the dynamic nature of sensing tasks in
IoT scenarios adds complexity [85]. Specifically, identifying
minimal data requirements needs to consider the varying rel-
evance of different modalities based on specific tasks. Adap-
tive approaches are necessary to dynamically adjust to task
dependencies.
We offer several insights into these challenges:

e Not every sample of sensor data contributes uniformly
to the subsequent model processing accuracy. Even dif-
ferent classes within the same task may exhibit varying
levels of impact by data. Therefore, a fine-grained task-
aware estimation of data contributions is essential.

e In the DL training tasks, mishandling unreliable data
samples can negatively impact accuracy. For example,
samples with high entropy may introduce noisy gradi-
ents, potentially disrupting the model’s stability. Even

similar learning objectives may have notable parameter
differences in a new epoch with fresh data due to the
model’s permutation invariance regarding hidden units.

o The lagging problem in data transmission in rapidly
changing perception environments can also cause com-
putational accuracy interference. Specifically, in asyn-
chronous distributed DL learning, such increased stale-
ness results in more significant parameter errors during
DL model updates [86].

e Excluding unreliable data samples leaves potential re-
dundancy. For instance, two similar samples with lower
prediction entropy require individual gradient back-
propagation, causing inefficiencies. Leveraging distinct
gradients for filtering is proposed [87]. However, stor-
ing gradients for comparison becomes computationally
and memory-intensive; instead, using an average value
is efficient. Consequently, establishing an active sam-
ple selection criterion aimed at identifying reliable and
non-redundant samples is necessary yet challenging.

3.1.2 Runtime Sampling Rate Adaptation

Adapting the sampling rate and on/off of each sensor in di-
verse agents based on their contribution and data processing
efficiency is a non-trivial task. This challenge arises due to
the dynamic nature of tasks and the varying relevance of sen-
sors for different activities, whose difficulty is compounded
by the fact that the contribution of each sensor can fluctuate
based on various system factors at hand. This further makes
it prohibitive to pre-determine the one-for-all sampling rate
and usage, necessitating a real-time adaptive approach [10].
However, the challenge lies in the current research’s inabil-
ity to accurately assess the contribution of each sensor and
make wise runtime adaptation decisions based on constantly
changing contextual requirements, ensuring the optimal bal-



ance between data accuracy and processing efficiency in dif-
ferent scenarios and tasks. Factors such as sensor noise, out-
liers, or unexpected events can introduce complexities in al-
gorithm design, requiring robust solutions that perform well
in diverse and dynamic scenarios.

Moreover, in scenarios involving multiple agents with
different sensors, the challenge lies in achieving coordina-
tion and collaboration for real-time sampling rate adapta-
tion, despite some preliminary research efforts. For exam-
ple, Wang et al. proposed a method [67] to optimize data
sampling by balancing energy consumption, accuracy, and
latency. Guan et al. introduced PERM [66], an optimiza-
tion method to enhance the sampling efficiency of multi-path
video streams. However, none of these methods have col-
laboratively optimized data adaptive sampling and model in-
ference efficiency, nor have they specifically targeted opti-
mization for real-world sensor data streams. For DL training
tasks, Ren er al. explored the impact of sampling methods
on uneven data distribution in long-tailed datasets on model
training efficiency [64]. Tranheden et al. proposed Dacs [63],
which uses cross-domain mixed sampling to perform unsu-
pervised domain transfer. However, fundamental issues per-
sist in these methods, such as adaptive sampling for long-
tailed datasets. Current research can only mitigate bias in
the model training process but cannot fully address it. This
phenomenon is challenging to avoid in practical sensor data.
To achieve real-time domain transfer using agnostic live sen-
sor data, gaining deeper insights into the universality and re-
source efficiency of unsupervised adaptive sampling training
methods is crucial. For DL evolving tasks, Brookes et al. pro-
posed a robust system design method based on data-adaptive
sampling [69]. Huijben et al. utilized Deep Probabilistic
Subsampling (DPS) [71] for task-aware sampling, optimiz-
ing an optimal subset of samples with a subsequence model
tailored to a specific task. However, with various tasks for
swarm agents, suitable data sampling methods need to be de-
signed across them. Current research always explores the re-
lationship between data adaptive sampling and model adap-
tation from a single device, lacking a unified framework to
guide it across collaborative swarm agents and diverse tasks.

3.1.3 Efficient DL Inference on Incomplete Data Stream

Real-time and precise processing of distributed multi-modal
data streams is paramount for various AloT applications. To
accomplish this objective, it is crucial to investigate efficient
inference frameworks capable of performing DL inference

using partial, delayed, incomplete, or missing data streams

from diverse agents. While distributed multi-modal sens-
ing data has the potential to enhance perception accuracy
and coverage through stereoscopic multi-perspective views,
as observed in vehicular networks and drone clusters collab-
orating to sense small, occluded, or low-light targets, these
challenges are common in real-world applications. This ne-

cessitates the exploration of several key technologies:

e Estimate and impute missing values and uncertainties
of real-time data streams, such as employing generative
models or interpolation techniques, enabling the model
to make informed predictions in the absence of complete
information. This enables the model to generate specu-
lative inferences based on available data and make accu-
rate predictions even with partial information. However,
determining whether imputing missing data points can
maintain the accuracy of underlying patterns, particu-
larly without labels, presents a challenge.

o Integrate uncertainty estimation, e.g., probabilistic mod-
els or Bayesian, into the DL model to quantify the uncer-
tainty associated with predictions made on incomplete
data. Adopt adaptive feature selection mechanisms to
prioritize and utilize the most informative features from
complete data, optimizing the fusion process.

e Develop pre-processing techniques for accurately syn-
chronizing and aligning multi-modal data streams is cru-
cial for accurate fusion and DL inference. However,
challenges in the above techniques will arise due to
varying data arrival rates, latency, and clock synchro-
nization among different sensors or data sources. More-
over, sensing environments are dynamic, and the charac-
teristics of data streams may change over time. Building
adaptive models that can continuously adjust to dynamic
conditions is crucial for the robustness of speculative in-
ference in asynchronous data streams [88].

e To execute the complex computations mentioned above,
especially in lightweight and accelerated implementa-
tions of generative and predictive models, is essential for
real-time systems with resource-constrained agents [89].

3.1.4 Dynamically Elastic DL Model Structure

The context-aware specification of the Swarm DL model
takes into account input sensor data, desired application per-
formance outcomes, and the constraints of available hardware
resources. It is dual-adaptive to the specific tasks and crafted
to be hardware resource-friendly. Specifically, the context-
aware DL models in inference, training, and adaptation tasks
should be dynamically scalable, divisible, and composable.
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e The DL model, encompassing structure and parameter
size, must scale up/down with varying compression de-
grees to meet dynamic resource constraints (memory,
computing, and battery) and specified performance re-
quirements (accuracy, latency, energy cost). Poorly de-
signed DL models may result in accuracy fluctuations.

e The divisibility and composability of DL models and
computation tasks are essential for distributing compu-
tation across AloT devices. Divisibility depends on in-
ternal dependencies within DL layers, channels, and op-
erators, while composability allows adjusting the sys-
tem to offload different DL block combinations to di-
verse agents based on dynamic resource availability.
Current algorithm-system co-design approaches, such
as PCONYV [100] and CoCoPIE [101], utilize fixed
resource-friendly patterns to guide DL model design and
operator/memory scheduling. However, they lack syn-
ergistic optimization of acquired data-aware DL model
computation and system deployment based on runtime
resource availability. The decentralized computation
constraints, specifically the computation from partial in-
formation, further complicate optimization challenges in
the co-designed swarm DL systems. Additionally, prop-
agating runtime hardware resource availability and sys-
tem execution feedback to data processing algorithm de-
sign remains a challenging aspect.

3.2 Test-time Self-evolutionary DL Adaptation

To maintain DL inference accuracy against non-stationary
data drift while satisfying data acquisition and processing re-
source limitations, exploring collaborative learning and adap-
tive aggregation for DL adaptation in a swarm is neces-
sary [11]. Specific issues include:

3.2.1 Swarm DL Adaptation with Heterogeneous Data

To achieve efficient and effective swarm DL adaptation, it is
essential to consider the heterogeneity of agents in terms of

data and device resources. Specifically, for each agent requir-
ing the aggregation of multi-source data, sensor data exhibits
asynchrony due to differences in modality, size, and trans-
mission bandwidth, introducing asynchronous data streams.
The asynchronous nature of distributed multi-modal data
streams poses challenges, leading to system delays (if wait-
ing for slow devices) or a decrease in accuracy due to insuffi-
cient or missing data modalities (if not waiting for slow data).
Additionally, when each agent collaboratively processes such
data, the diversity in computational resources leads to varia-
tions between fast and slow devices. The dual system asyn-
chrony complicates the balance between accuracy and latency
(waiting for slow devices/data introduces delays, while dis-
carding slow devices/data may result in accuracy reduction),
necessitating coordinated optimization of both data acquisi-
tion and data processing. Furthermore, the distribution het-
erogeneity and imbalance in sensor data distribution across
different agents, including non-independently and Identically
Distributed (non-1ID), pose more challenges to achieving the
accuracy-latency balance in the swarm DL system. To tackle
these challenges, several valuable systemic considerations in-
troduce special challenges and innovation opportunities for
traditional DL inference, training, and adaptation algorithms.

Take the example of the Federated Learning (FL) scheme,
where the similarity of data among different agent subsets
is observed. It exhibits a clustering property in the swarm
agents, it can mitigate data heterogeneity and enhance DL
training accuracy by jointly training agents with similar sen-
sor data distribution. However, clustering alone cannot re-
solve the issue of device asynchrony, still leading to waiting
times for fast agents and consequently reducing the efficiency
of swarm training. Asynchronous system mechanisms offer a
solution to address device heterogeneity, but current cluster-
based personalization methods are tightly linked with syn-
chronous settings. Achieving asynchronous cluster associa-
tion in FL poses two significant challenges: i) The clustering
process for real-time agent association under asynchrony of
data and devices can only gather partial information, mak-
ing it challenging to obtain quick and accurate clustering re-
sults. ii) The staleness issue induced by data and devices
asynchrony can result in the abandonment of some person-
alized knowledge, leading to a decrease in the accuracy of
learned DL models.

Exploiting the complementary nature of different modal-
ities in DL adaptation, particularly when faced with asyn-
chronous real-time sensor data is a promising direction.
Specifically, the scarcity of high-quality sensor data intro-
duces a bottleneck in the mutual information between single-
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Multi-
modal data offers a more comprehensive representation of ob-

modal data and downstream tasks of models [80].

jects, improving the model’s accuracy and robustness. There-
fore, it is critical to mine the correlation between data features
and target tasks, sharing the data most relevant to models’
downstream tasks, to achieve complementation and enhance-
ment of data. Also, it requires investigating fine-grained fu-
sion strategies that effectively leverage the unique informa-
tion present in each modality and beyond simple concatena-
tion or early/late fusion.

3.2.2 Multi-task Co-adaptation

We explore collaborative swarm DL adaptation that consid-
ers the characteristics of diverse tasks and data. Integrat-
ing multi-task DL learning frameworks to enhance adaptation
performance with limited local data and resource is an excit-
ing direction. In different tasks, DL models generate a vari-
ety of transferable knowledge during training, part of which
can augment other models’ comprehension of their target
tasks. Such transferable knowledge learning enhances mod-
els’ feature representation and semantic understanding, en-
abling high-accuracy DL model training. However, this ben-
efit is confined to task-related scenarios. In cases where task
differences are obvious, multi-task learning will suffer from
negative transfer [75] and seesaw phenomena [76], making
accuracy gain lower than expected. Therefore, it is desired
to capture task dependencies, similarities, and hierarchies
for effective knowledge transfer and representation sharing
across tasks in an asynchronous system (see Fig. 7), rather
than at a fixed scheme. Additionally, within a swarm sys-
tem, there might be local correlations among multiple tasks
for several agents, and harnessing this local interdependence
to mutual DL adaptation can be also valuable.

3.3 Adaptive System Resource Scheduling

In model-adaptive system deployment, maximizing runtime
hardware capability goes beyond algorithms. Practices like
intermediate result reuse and eliminating storage fragmen-
tation are crucial for enhancing performance limits. Even
with widely used DL model configurations, mapping model
layers/operators onto different underlying resources in vary-
ing sequences results in diverse latency and resource over-
head. For instance, addressing memory fragmentation in
SqueezeNet’s tensor layout can reduce wasted memory sig-
nificantly. Thus, strategic optimization of the computation
graph, operator parallelism/fusion, and memory allocation
across processors can enhance runtime resource availability
for DL execution. Moreover, algorithm-system co-design
in swarm systems should facilitate iterative exploration of a
more flexible DL. model design space at the algorithm level,
pushing the boundaries on accuracy-resource trade-offs, as
shown in Fig. 8.

However, despite previous efforts in algorithm-system co-
design for individual embedded devices [14], the optimiza-
tion scope for the networked swarm DL system requires re-
definition. Possible areas for further research include:

o Tailoring the system scheduling to the characteristics of
data processing tasks, such as tensor/operator life cy-
cles and dependencies, can enhance computation par-
allelism, increase data reuse, and reduce memory frag-
mentation during swarm data processing. We note that,
unlike traditional operating systems that allocate re-
sources for unpredictable tasks, DL. models exhibit rel-
atively fixed computation patterns. This stronger pre-
dictability in terms of computation dependencies and
life cycles makes fine-grained optimizations more fea-
sible. For example, Geoffrey et al. [72] leverage the
repeated computation characteristics of DL models to
characterize resources required for the entire training by
predicting the time of a single iteration.

e While individual agents may make separate resource
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pool scheduling decisions, a global performance eval-
uation is crucial.

Furthermore, to address the heterogeneity among agents,
an automated framework is essential for a self-adaptive and
self-adaptationary swarm DL system. This framework in-
volves the fine-grained search space, pre-execution perfor-
mance predictors, and schedulers. For instance, Li et al.
optimize DL inference by searching from heterogeneous
computing hardware pools with minimal online exploration
costs [74]. Astra [72] significantly reduces the state space
that needs to be searched in the prediction model through
lightweight analysis and summary data indexing. However,
these studies primarily focus on computation task offloading
by predicting the deployment cost of DL models without con-
sidering how to adapt to dynamic context changes in a swarm
system. iv) Current DL frameworks such as TensorFlow Lite
[102], MNN [103], and NCNN [104] are sub-optimal for
heterogeneous swarm systems. Because these frameworks,
initially designed for optimizing a single DL model, may
not fully leverage the capabilities of various processors in
modern embedded agents.  Additionally, the absence of a
unified framework for deploying and evaluating DL mod-
els” deployment costs across various agents, heterogeneous
CPU/GPU/NPU/DSP processors, and DL frameworks poses
challenges in comparing and measuring selectable technique
performance. More insights and efforts on the cross-agent
framework are required.

Scheduling suitable agents within a closely connected
and resource-constrained swarm is necessary yet challeng-
ing [15]. We have observed that a data processing task can
only be executed if it obtains enough memory resources, and
its execution time decreases as computing resources increase.
Specifically, several aspects could be researched:

e It is intractable to monitor the dynamic resource avail-

ability with heterogeneous backends and predict the re-
source requirements of data acquisition and DL tasks.
Especially, it is challenging to provide an accurate and
timely estimate of DL inference performance.

When multiple tasks run concurrently, there will be
competition for shared resources among agents. Each
agent can control the scheduling time for different tasks
by determining when to allocate sufficient memory re-
sources for them. It requires reasonable planning based
on task urgency, computational cost, and training time.
To maximize resource utilization, it is significant to
match allocated resources with task requirements, which
requires a full analysis of the relationship between allo-
cated resources and latency for various tasks.

Runtime optimizer, e.g., dynamic programming, rein-
forcement learning, or graph search, for multi-objective
optimization, is a fundamental NP-hard problem to ad-
just all system layers (e.g., operator order, memory al-
location) to achieve optimal resource supply-demand
matching.

A well-designed search space is crucial to address the
attribute differences among multiple data processing de-
mands and enhance the search speed of scheduling. It
is also NP-hard to adaptively schedule all asynchronous
tasks with different resource demands to fit them into
the server with dynamic resource availability and maxi-
mize overall performance. Selecting task combinations
can effectively reduce the number of searches, thereby
improving speed. For example, we explored optimiz-
ing the search space through a task grouping mechanism
that takes into account the grouping probability in the
dynamic system context [105].
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3.4 Asynchronous and Flexible Communication

In a decentralized swarm, effective communication among
agents plays a crucial role in information sharing [90], coop-
erative sensing [91], exchanging model updates [92], and col-
laborating on decision-making [12]. However, the distributed
data acquisition and decentralized data processing context
pose challenges in terms of scalability and efficiency. For ex-
ample, naively transmitting raw sensor data consumes exces-
sive bandwidth, e.g., full frames of high-fidelity data could
exceed 300 Mbps, rendering it unsustainable even with ad-
vanced wireless communication technologies [93-95]. Thus,
data pre-processing for selective transmission is essential but
challenging. Particularly, the inter-agent time gaps from dif-
ferent agents, in data fusion, will result in inaccurate merg-
ing and compromise the performance of subsequent sens-
ing tasks. We define the data arrival time gaps as the time
between data being generated by the producer and reach-
ing the consumer. This period involves sensor data pre-
processing, transmission, and post-processing, delaying sub-
sequent tasks. Therefore, the key opportunity and challenge
is tuning these three system components to balance compu-
tation cost and intermediate data size under dynamic data
complexity, local resource availability, and communication
bandwidth to minimize overall time gaps. Also, it becomes
necessary to consider the flexibility of asynchronous and syn-
chronous communication for balancing immediate coordina-
tion and accuracy [96].

4 Case Study

We showcase the advantages of swarm DL with two prelim-
inary studies, i.e., swarm DL adaptation and swarm DL fed-
erated learning (FL).

4.1 DeepSwarm for Swarm DL Adaptation

Mobile video applications today have attracted significant at-
tention. The compressed DL model is widely used to enable
on-device video inference and analysis.however, the accuracy

of inference is vulnerable to the non-stationary data drift of
the live video captured from dynamically changing mobile
environments.  To combat data drifts, proactive and con-
tinuous adaptation of DL models at each swarm agent with

freshly collected data is desired.

We present a swarm DL adaptation system based on the
DeepSwarm framework, which enables each agent to contin-
uously update using newly collected sensor data from local
and other agents, as shown in Figure 9. Multiple agents can
independently initiate this DL adaptation task. The primary
objective is to maximize the average accuracy, representing
the ratio of high-accuracy inference time to the total life cy-
cle (including inference, waiting, and retraining time) for all
agents. It consists of the following three modules.

4.1.1 Data Drift-aware Video Frame Sampling

Acquiring appropriate data from swarm agents is crucial for
the adaptation of DL models. Previous work [11,77,78] pri-
marily retrains on-device DL models using data from a single
agent, which results in low model generalization and dimin-
ished accuracy over time. Real-time data from a single device
is limited, while data sharing across devices can supplement
each other, enrich the DL model’s representation, and im-
prove accuracy and generalization in downstream tasks. To
achieve rapid DL adaptation with minimal video frames and
maximized accuracy gain at each agent, we adopt a dedicated
frame sampling strategy in a data drift-aware manner for vari-
ous data drifts, as illustrated in Fig. 10. In IoT environments,
we categorize live sensor data drift into three different types,
i.e., sudden, incremental, and gradual drifts. For sudden or
incremental drifts, we use a linear sampling rate to efficiently
select video frames, ensuring significant data for adapting the
DL model. For gradual drifts specifically, we start with the
frame difference method to eliminate redundant frames. Sub-
sequently, we assess the distance between the non-redundant
frame and the global view of the data distribution to predict
the contribution of every frame and select the most represen-
tative frames for subsequent DL adaptation tasks.
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Table 1: Performance comparison of different DL model adaptation methods

Method Accuracy gain of Accuracy of mobile model Accuracy gain of
global model after adaptation mobile model
ToU = 0.5 ToU = 0.50 ToU = 0.50
Mobile Mobile Mobile A Mobile Mobile Mobile A
model A model B model C verage model A model B model C verage
Domain adaptation None 0.504 0.469 0.497 0.49 14.3% 48.9% 13.7% 23.4%
NestEvo without 13% 0504 | 0475 | 0501 | 0505 | 143% | 508% | 155% | 27.2%
data generation
Original None 0.441 0315 0437 0397 None
mobile model
Only mobile 0 0.501 0.478 0.493 0.491 13.6% 51.7% 12.8% 23.7%
model adaptation
NestEvo 9.13% 0.571 0.543 0.584 0.566 29.5% 72.4% 33.6% 42.6%

4.1.2 Feedback-aware DL Adaptation Trigger

Accurately triggering the DL model adaptation at each agent
can maintain model accuracy over their life cycle while min-
imizing system overhead. Insufficient adaptation frequency
leads to prolonged periods of low-accuracy inference, while
excessive adaptation frequency increases overhead at the
agent. Detecting data drift time points, where DL model ac-
curacy significantly drops, is essential for achieving accuracy
and adaptive adaptation trigger. However, measuring accu-
racy drop feedback in dynamic mobile environments with
resource limitations based on unlabeled sensor data is chal-
lenging. We employ confidence scores, encompassing clas-
sification and localization confidence, to enhance the agent’s
processing accuracy. Moreover, we observe that the onset
of the accuracy drop is not always the optimal trigger time-
point for DL adaptation. To identify the trigger timepoint, we
develop a sliding window to measure accuracy drop rate and
monitor data drift. Specifically, adaptation is initiated when
the drop surpasses a pre-set threshold, transitioning from the
old to new data distribution. Then, agents assess confidence
variance to determine if the new distribution stabilizes, en-
abling more tailored and effective adaptation with real-time
sensor data.

4.1.3 Adaptive DL Adaptation and Resource Scheduling

Enhancing average accuracy throughout the lifecycle entails
prolonging high-accuracy inference periods and minimizing

retraining time. We use predicted performance metrics for
each task, such as accuracy gain, training time, and resource
demand, to develop optimal task scheduling strategies. We
estimate memory requirements for each task by analyzing
layer parameters and features. To profile training time, we
build a lightweight prediction network. We also develop a
non-negative least squares solver to model the relationship
between accuracy and training time for predicting accuracy
gains of an adaptation task. Using these metrics, we employ
a dynamic programming algorithm to select asynchronous
adaptation tasks and utilize in-memory computing to accel-
erate adaptation, reducing overall retraining latency. This
scheme efficiently handles matrix multiplication for generat-
ing pseudo-labels. Concurrently, we optimize the retraining
process to mitigate the impact of resistor noise on accuracy.

4.1.4 Experimental Results

We compare our system with four baselines, i.e., domain
adaptation [78], DeepSwarm without data fusion from other
agents, original agent DL model, and single-agent adap-
tation [79].
tive method to deal with data drift using adversarial train-

Specifically, domain adaptation is an effec-

ing. DeepSwarm without data fusion from other agents and
single-agent adaptation baselines both employ knowledge
distillation with single-source data for adaptations, but the
former includes the global model updating. In this experi-
ment, we employ three types of agents with lightweight DL
models, i.e., pruned Faster-RCNNs with accuracies of 0.441,
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Fig. 11: Illustration of proactive data acquisition and processing for asynchronous personalized FL.

0.315, and 0.437. Using videos collected by these agents, we
compare the accuracy gain of the retraind DL models. Table 1
demonstrates that DeepSwarm achieves the best overall per-
formance in terms of accuracy, enhancing average accuracy
by over 40% compared to the original models for the mobile
model and by 9% for the global model.

4.2 DeepSwarm for Asynchronous Personalized FL

We further integrate DeepSwarm with the federated learn-
ing framework in IoT systems. Federated learning (FL) al-
lows agents upload DL models instead of transmitting data
for joint DL training. However, real-world mobile systems
with asynchronous sensor data and heterogeneous agent re-
sources pose challenges to FL. Traditional synchronous FL
methods often result in significant delays and inefficiencies
due to varying upload times for models. To address this, we
transition to asynchronous FL. Another challenge is personal-
ization, as mobile agents exhibit significant variations in bias
toward sensing data and DL inference results.

Utilizing self-organized agent associations to train mul-
tiple personalized DL models can enhance inference accu-
racy. However, existing personalized FL methods assume
synchronous, which is impractical. Achieving real-time self-
organized agent association and asynchronous personalized
FL with high accuracy and efficiency poses significant chal-
lenges for the swarm DL system. In addition, highly asyn-
chronous sensor data and heterogeneous devices can cause
delays in DL model uploading from agents, known as the
staleness problem. This leads to errors in the personalized DL
model aggregation process in FL, reducing accuracy. There-
fore, we employ DeepSwarm for staleness control in asyn-
chronous personalized federated learning of swarm DL mod-
els. DeepSwarm comprises two main technical blocks.

4.2.1 Data-aware Asynchronous Agent Association for

Staleness Control

To enable efficient asynchronous personalized FL. among
swarm agents with diverse data distribution and hardware re-
sources, DeepSwarm facilitates rapid agent association and
mitigates staleness issues stemming from asynchronous sen-
sor data and agents. For real-time agent clustering, Deep-
Swarm employs an on-arrival initial cluster association mech-
anism. As updates to the DL model arrive asynchronously,
clusters are initialized gradually. Initially, cluster centers are
set using the first few arriving model parameters at the server,
continuing until the predefined cluster number threshold is
reached. Then, the server calculates the L1 distance that is
simple to quantify the difference between newly arrived DL
model parameters and existing cluster centers’ model param-
eters. Agents are then assigned to the closest cluster based on
the minimum L1 distance.

To control model staleness resulting from asynchronous
agents in the swarm, we present to promptly distribute DL
models newly aggregated by the server to agents within the
cluster. DeepSwarm defines the personalized cluster as the
broadcast range. While data heterogeneity can pose chal-
lenges in traditional FL, it’s beneficial in personalized FL.
Heterogeneous data aids models in adapting to specific sce-
narios or tasks, enhancing model personalization. By restrict-
ing broadcasts to in-cluster clients with similar data distribu-
tions, we narrow the broadcast scope. In-cluster broadcast-
ing occurs on relatively homogeneous data, enhancing tol-
erance to staleness and potentially reducing broadcast fre-
quency. Broadcast frequency is dynamically adjusted based
on historical model changes since the last broadcast and pre-
dicted changes before the next aggregation. Broadcast is trig-
gered when predicted changes exceed historical changes.

4.2.2 Feedback-aware Dynamic Cluster Refinement

Although initial clusters capture agent associations, errors
may occur. Agents simultaneously evaluate the effectiveness
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Fig. 12: Comparison of accuracy vs. training time between DeepSwarm and other baselines on diverse tasks.

of the assigned cluster center model on their local sensor data
and provide this feedback to the server. Throughout the FL
process, the server dynamically refines clusters based on up-
loaded feedback to fine-tune clustering. Cluster refinement
involves two iterative steps: expansion and merging.

e Low feedback from an agent indicates inaccurate agent
collaboration. In response, the server initiates an clsuter
expansion process, assigning the agent to a new clus-
ter. To prevent overfitting in newly expanded clusters
with few agents, most parameters in the center model
are frozen, and only the output layer is trained exclu-
sively. The freezing constraint is gradually lifted until
the server triggers cluster merging.

e Cluster merging occurs when the number of clusters ex-
ceeds a threshold. Clusters with similar data distribu-
tion are iteratively combined until the number of clusters
drops below the merging threshold. However, as model
parameters of different cluster centers are trained sep-
arately, they may fit diverse and potentially conflicting
data distributions. Simple aggregation of their parame-
ters as the center of the merged cluster would be sub-
optimal. Thus, we adopt a weight aggregation scheme
based on fine-grained momentum.

4.2.3 Experimental results

We compared DeepSwarm with five SOTA baselines, includ-
ing the standard FL. method FedAvg, the asynchronous FL
method FedAsync, the semi-asynchronous FL method Fed-
Select, and FedSEA, as well as the personalized FL. method
ClusterFL. We conducted experiments to validate the effec-
tiveness of DeepSwarm across three typical tasks, including
image classification (IC), human activity recognition (HAR),
and sound detection (SD). In this experiment, we utilize a
simulation environment where our simulated cluster com-
prises 20% Jetson Nano, 20% Jetson NX Xavier, 20% Jetson
Orin, and 40% Raspberry Pi 4. For IC, we divide CIFAR-
10 [114] into 120 clients. For HAR, we split UCI-HAR [115]

into 30 clients. For SD, we split Ubisound [8] into 10 clients.

The results showed that DeepSwarm achieves a reduction of
up to 88.2% in convergence time, and an improvement of up
to 46% in accuracy.

5 Conclusion

In this paper, we introduced the concept of Swarm DL, ex-
tending existing on-device DL paradigms that predominantly
rely on predefined data processing patterns to react given
data. This reliance often leads to accuracy and resource ef-
ficiency bottlenecks. Inspired by the collective intelligence
observed in natural swarms, where individual proactive ac-
tions contribute to superior global performance, we advocate
for a shift towards Swarm DL. By harnessing the potential of
physically adjacent mobile and embedded devices in IoT sce-
narios, we present DeepSwarm, a closed-loop system frame-
work architecture. DeepSwarm facilitates bidirectional op-
timization between data acquisition and processing, aiming
to push the performance boundaries of on-device DL Specif-
ically, DeepSwarm addresses the requirements of proactive
swarm DL by decomposing them into layers: self-organized
swarm data acquisition and self-adaptive, self-evolutionary
swarm data processing. We discuss the challenges of de-
coupled functional modules and present two preliminary case
studies of DeepSwarm to demonstrate its advantages. In the
future, DeepSwarm still encounter challenges such as dy-
namics and diversity in data, resources, and performance de-
mands, runtime and automatic bio-optimization will be cru-
cial for swarm DL’s future development.
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