A Novel Dictionary Based Approach for Missing Sample Recovery of Signals in Manifold

Baburaj M. · Sudhish N George

Projection Operator

 $\mathscr{P}_{\mathscr{M}}(x) = \min_{\widetilde{x} \in \mathscr{M}} \|\widetilde{x} - x\| \tag{1}$

Informally, given an arbitrary vector $x \in \mathbb{R}^{N}$, the operator $\mathcal{P}_{\mathcal{M}}(x)$ returns the point on the manifold \mathcal{M} that is closest to *x*, where closeness is measured in terms of the Euclidean norm. The projection operator $\mathcal{P}_{\mathcal{M}}(.)$ as euclidean projection onto \mathcal{M} . Note that in a number of applications, $\mathcal{P}_{\mathcal{M}}(.)$ as euclidean projection onto \mathcal{M} may be quite difficult to compute exactly. Therefore, we define γ -approximate projection operator as

$$\widetilde{x} = \mathscr{P}^{\gamma}_{\mathscr{M}}(x) \implies \widetilde{x} \in \mathscr{M}, \text{ and } \|\widetilde{x} - x\| \le \|\mathscr{P}_{\mathscr{M}}(x) - x\| + \gamma$$
(2)

so that $\mathscr{P}^{\gamma}_{\mathscr{M}}(.)$ yields a vector $\widetilde{x} \in \mathscr{M}$ that approximately minimizes the squared distance from *x* to \mathscr{M} .

Graident Operator

Let $\tilde{x} \in \mathbb{R}^N$ be the signal having arbitrary missing samples. The original clean signal $x \in \mathcal{M}$, so that, corrupted signal can be modelled as

$$\widetilde{x} = x + e, \ x \in \mathcal{M} \tag{3}$$

where e is the error due to missing samples. In worst case, noisy version of signal can be modelled as,

$$\widetilde{x}_{\eta} = x + e + \eta, \ x \in \mathcal{M} \tag{4}$$

where η is the additive white Gaussian noise present in the signal. If we project clean signal *x* onto \mathscr{M} , the result is signal *x* itself, whereas the projection of \tilde{x} yields $\hat{x} = \mathscr{P}_{\mathscr{M}}(\tilde{x})$, $\tilde{x} \in \mathscr{M} \& \|\tilde{x} - \tilde{x}\|_2 \leq \varepsilon$, where ε is a positive quantity. Let $p_i \in \mathbb{I}$ for i = 1...M are the locations of *M* missing samples. For each missing positions at k^{th} iteration we form two signals.

we form two signals.

$$\hat{x}_{+\delta}^{(k)}(n) = \begin{cases} \hat{x}^{(k)}(n) + \Delta & \text{if } n = p_i \\ \hat{x}^{(k)}(n) & \text{if } n \neq p_i. \end{cases}$$

$$\hat{x}_{-\delta}^{(k)}(n) = \begin{cases} \hat{x}^{(k)}(n) - \Delta & \text{if } n = p_i \\ \hat{x}^{(k)}(n) & \text{if } n \neq p_i. \end{cases}$$

where Δ is the step size. The projection of these signals onto manifold \mathcal{M} is calculated as

$$egin{aligned} \check{\mathbf{x}}_{+oldsymbol{\delta}}^{(k)} &= \mathscr{P}_{\mathscr{M}}(\hat{x}_{+oldsymbol{\delta}}^{(k)}) \ \check{\mathbf{x}}_{-oldsymbol{\delta}}^{(k)} &= \mathscr{P}_{\mathscr{M}}(\hat{x}_{-oldsymbol{\delta}}^{(k)}) \end{aligned}$$

The distance between the projected signal and original signal is measured as

$$d_1^{(k)} = \|\hat{x}_{+\delta}^{(k)} - \check{x}_{+\delta}^{(k)}\|_2$$
$$d_2^{(k)} = \|\hat{x}_{-\delta}^{(k)} - \check{x}_{-\delta}^{(k)}\|_2$$

The gradient is evaluated as

$$\mathscr{G}^{(k)}(p_i) = \frac{d_1^{(k)} - d_2^{(k)}}{2\Delta} \qquad \forall i = 1...M$$
 (5)

 \mathscr{G} will have the same dimension as signal with missing samples $\widetilde{x} \in \mathbb{R}^{N}$. The missing values of signal is corrected by applying correction.

Stability and Convergence

Analysis of stability and convergence of proposed method is presented. Stability have a direct dependence on the hyperparameters and detailed discussion of hyper-parameters is presented in the *section 4*.

Theorem 1 Let $x = (x_1, ..., x_j, ..., x_n) \in \mathscr{M}$ with $x(j) \neq 0$ and $\widetilde{x} = (x_1, ..., \widetilde{x}_j, ..., x_n) \in \mathscr{R}^n$ be a single sample corrupted version of x such that $\widetilde{x}_j = 0$ or $\widetilde{x}(j) = 0$. Then if $\widehat{x}^{(k)}$ and $\widehat{x}^{(l)}$ be two recovered versions of x such that $||x - \widehat{x}^{(k)}|| \leq ||x - \widehat{x}^{(l)}||$ then the respective gradients defined by (5) will be related as $\mathscr{G}^{(k)}(j) \leq \mathscr{G}^{(l)}(j)$.

Proof From the definition or projection operator (1) we have $||x - \mathscr{P}_{\mathscr{M}}(x)|| = 0$

$$\mathscr{G}^{(k)}(j) = \frac{\left\| \hat{x}_{+\delta}^{(k)} - \mathscr{P}_{\mathscr{M}}(\hat{x}_{+\delta}^{(k)}) \right\|_{2} - \left\| \hat{x}_{-\delta}^{(k)} - \mathscr{P}_{\mathscr{M}}(\hat{x}_{-\delta}^{(k)}) \right\|_{2}}{2\Delta}$$

Without the loss of generality, we can assume that $x_{j} > 0$,

$$x_j^{(k)} \le x_j \text{ and } x_j^{(j)} \le x_j \text{ then}$$
$$\mathscr{G}^{(k)}(j) \approx \frac{\sqrt{\left\{ (\hat{x_j}^{(k)} + \Delta) - (x_j - \varepsilon_1) \right\}^2} - \sqrt{\left\{ (\hat{x_j}^{(k)} - \Delta) - (x_j - \varepsilon_2) \right\}^2}}{2\Delta}$$

where
$$\varepsilon_1 > 0, \varepsilon_2 > 0 \& \varepsilon_1 < \varepsilon_2$$

 $\mathscr{G}^{(k)}(j) \approx \frac{(\hat{x}_j^{(k)} + \Delta) - (x_j - \varepsilon_1) - (\hat{x}_j^{(k)} - \Delta) + (x_j - \varepsilon_2)}{2\Delta}$
 $\therefore \mathscr{G}^{(k)}(j) \approx \frac{2\Delta + \varepsilon_1 - \varepsilon_2}{2\Delta}$
 $\mathscr{G}^{(k)}(j) \approx 1 - \frac{\varepsilon_2 - \varepsilon_1}{2\Delta}$

(6)

Select the parameter Δ such that $\frac{\varepsilon_2 - \varepsilon_1}{2\Delta} \leq 1$. Since $x_j^{(j)} \leq x_j$ and using the definition (6) $\mathscr{G}^{(l)}(j) \approx 1 - \frac{\varepsilon_4 - \varepsilon_3}{2\Delta}$ with $\varepsilon_1 > 0, \varepsilon_2 > 0$ & $\varepsilon_3 < \varepsilon_4$ Since $||x - \hat{x}^{(k)}|| \leq ||x - \hat{x}^{(l)}||$ and using (1) we have, $\frac{\varepsilon_4 - \varepsilon_3}{2\Delta} \leq \frac{\varepsilon_2 - \varepsilon_1}{2\Delta} \implies \mathscr{G}^{(k)}(j) \leq \mathscr{G}^{(l)}(j)$

Proposition 1 If $x = (x_1, \dots, x_j, \dots, x_n) \in \mathcal{M}$ then the gradient defined by (5) will be $\mathscr{G}^{(k)} = (0, 0, \dots, 0)$. $\mathscr{G}^{(k)}(j) = \frac{\|\hat{x}_{+\delta} - \mathscr{P}_{\mathcal{M}}(\hat{x}_{+\delta})\|_2 - \|\hat{x}_{-\delta} - \mathscr{P}_{\mathcal{M}}(\hat{x}_{-\delta})\|_2}{2\Delta}$ where $j \in \{1, 2, \dots, n\}$ When $x \in \mathcal{M}$, using the definition (1) we have the distances $\|\hat{x}_{+\delta} - \mathscr{P}_{\mathcal{M}}(\hat{x}_{+\delta})\|_2 = \|\hat{x}_{-\delta} - \mathscr{P}_{\mathcal{M}}(\hat{x}_{-\delta})\|_2$ $\therefore \mathscr{G}^{(k)} = (0, 0, \dots, 0).$

According *Theorem-1* stability can be achieved, if we choose parameter Δ such a way that $\frac{\epsilon_2 - \epsilon_1}{2\Delta} \leq 1$. Therefore, proper selection of the Δ will lead to a stable recovery. It is clear from *Proposition-1* that when the signal \hat{x} approaches clean signal x then the gradient \mathscr{G} approaches zero. Also each estimate update $\hat{x}^{(k+1)} \leftarrow \hat{x}^{(k)} - \mu \mathscr{G}^{(k)}$ is performed in such a way that $||x - \hat{x}^{(k+1)}||_2 \leq ||x - \hat{x}^{(k)}||_2$. Hence the proper selection of Δ and μ also ensures the convergence of the algorithm.

Sensitivity of hyper-parametes Δ and μ :

Detailed analysis of hyper-parameters Δ and μ is shown in the figure: 1, 2, 3 and 4 for translated Gaussian pulse recovery. When the analysis is carried out by varying μ , the other parameter is kept at $\Delta = 0.5$. Similarly when the analysis is carried out by varying Δ , the other parameter is kept at $\mu = 0.5$. Analysis reveals that increase in μ value result in early convergence. Better recovery also can be achieved by increasing value of μ . On the other hand, when μ is increased beyond unity the algorithm diverges. Algorithms goes unstable when the value μ approaches unity. So it recommended to limit the value of μ between zero and unity $(0 < \mu < 1)$ for better performance. Parameter Δ is application specific and shows lesser sensitivity compared to μ . It is oblivious from the analysis that the increase in Δ guarantee an early recovery and better performance, even if its value increases beyond unity. But the algorithm goes unstable, if it is increased beyond a certain limit. The limit depends on the current value of the signal at the position under consideration. Therefore, it is recommended to limit the value $0 < \Delta < 1$ for a stable recovery.

Fig. 1 Sensitivity of hyper-parameters: Dependence of MSE on μ or Δ with other parameter fixed at 0.5

Fig. 2 Sensitivity of hyper-parameters: Dependence of MAE on μ or Δ with other parameter fixed at 0.5

Fig. 3 Sensitivity of hyper-parameters: Number of iterations to reach a MSE = 10^{-3} vs μ or Δ with other parameter fixed at 0.65

Fig. 4 Sensitivity of hyper-parameters: Number of iterations to reach a MAE = 10^{-2} vs μ or Δ with other parameter fixed at 0.5