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Projection Operator

PM (x) = min
x̃∈M
‖x̃− x‖ (1)

Informally, given an arbitrary vector x ∈ RN, the operator
PM (x) returns the point on the manifold M that is closest
to x, where closeness is measured in terms of the Euclidean
norm. The projection operator PM (.) as euclidean projec-
tion onto M . Note that in a number of applications, PM (.)

as euclidean projection onto M may be quite difficult to
compute exactly. Therefore, we define γ-approximate pro-
jection operator as

x̃ = Pγ

M (x) =⇒ x̃ ∈M , and ‖x̃− x‖ ≤ ‖PM (x)− x‖+ γ

(2)

so that Pγ

M (.) yields a vector x̃ ∈M that approximately
minimizes the squared distance from x to M .

Graident Operator

Let x̃ ∈ RN be the signal having arbitrary missing samples.
The original clean signal x ∈M , so that, corrupted signal
can be modelled as

x̃ = x+ e, x ∈M (3)

where e is the error due to missing samples. In worst case,
noisy version of signal can be modelled as,

x̃η = x+ e+η , x ∈M (4)

where η is the additive white Gaussian noise present in the
signal. If we project clean signal x onto M , the result is sig-
nal x itself, whereas the projection of x̃ yields x̂ = PM (x̃),
x̌ ∈M & ‖x̃− x̌‖2 ≤ ε , where ε is a positive quantity. Let
pi ∈ I f or i = 1 . . .M are the locations of M missing sam-
ples. For each missing positions at kth iteration we form two
signals.
we form two signals.

x̂(k)+δ
(n) =

{
x̂(k)(n)+∆ if n = pi

x̂(k)(n) if n 6= pi.

x̂(k)−δ
(n) =

{
x̂(k)(n)−∆ if n = pi

x̂(k)(n) if n 6= pi.

where ∆ is the step size. The projection of these signals onto
manifold M is calculated as

x̌(k)+δ
= PM (x̂(k)+δ

)

x̌(k)−δ
= PM (x̂(k)−δ

)

The distance between the projected signal and original sig-
nal is measured as

d(k)
1 = ‖x̂(k)+δ

− x̌(k)+δ
‖2

d(k)
2 = ‖x̂(k)−δ

− x̌(k)−δ
‖2

The gradient is evaluated as

G (k)(pi) =
d(k)

1 −d(k)
2

2∆
∀i = 1 . . .M (5)

G will have the same dimension as signal with missing sam-
ples x̃ ∈ RN. The missing values of signal is corrected by
applying correction.

Stability and Convergence

Analysis of stability and convergence of proposed method is
presented. Stability have a direct dependence on the hyper-
parameters and detailed discussion of hyper-parameters is
presented in the section 4.

Theorem 1 Let x = (x1, . . .x j . . .xn)∈M with x( j) 6= 0 and
x̃ = (x1, . . . x̃ j . . .xn) ∈Rn be a single sample corrupted ver-
sion of x such that x̃ j = 0 or x̃( j) = 0. Then if x̂(k) and x̂(l) be
two recovered versions of x such that ‖x− x̂(k)‖ ≤ ‖x− x̂(l)‖
then the respective gradients defined by (5) will be related
as G (k)( j)≤ G (l)( j).

Proof From the definition or projection operator (1) we have
‖x−PM (x)‖= 0

G (k)( j) =

wwx̂(k)
+δ
−PM

(
x̂(k)
+δ

)ww
2
−
wwx̂(k)−δ

−PM

(
x̂(k)−δ

)ww
2

2∆

Without the loss of generality, we can assume that x j > 0,
x(k)j ≤ x j and x( j)

j ≤ x j then

G (k)( j)≈
√
{(x̂ j

(k)+∆)−(x j−ε1)}2−
√
{(x̂ j

(k)−∆)−(x j−ε2)}2

2∆
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where ε1 > 0,ε2 > 0 & ε1 < ε2

G (k)( j)≈ (x̂ j
(k)+∆)−(x j−ε1)−(x̂ j

(k)−∆)+(x j−ε2)
2∆

∴ G (k)( j)≈ 2∆+ε1−ε2
2∆

G (k)( j)≈ 1− ε2− ε1

2∆
(6)

Select the parameter ∆ such that ε2−ε1
2∆
≤ 1.

Since x( j)
j ≤ x j and using the definition (6)

G (l)( j)≈ 1− ε4−ε3
2∆

with ε1 > 0,ε2 > 0 & ε3 < ε4

Since ‖x− x̂(k)‖ ≤ ‖x− x̂(l)‖ and using (1) we have,
ε4−ε3

2∆
≤ ε2−ε1

2∆
=⇒ G (k)( j)≤ G (l)( j)

Proposition 1 If x=(x1, . . .x j . . .xn)∈M then the gradient
defined by (5) will be G (k) = (0,0, . . .0).

G (k)( j) =

wwx̂+δ−PM (x̂+δ )
ww

2
−
wwx̂−δ−PM (x̂−δ )

ww
2

2∆

where j ∈ {1,2, . . .n}
When x ∈M , using the definition (1) we have the distanceswwx̂+δ −PM (x̂+δ )

ww
2 =

wwx̂−δ −PM (x̂−δ )
ww

2
∴ G (k) = (0,0, . . .0).

According Theorem-1 stability can be achieved, if we choose
parameter ∆ such a way that ε2−ε1

2∆
≤ 1. Therefore, proper se-

lection of the ∆ will lead to a stable recovery. It is clear from
Proposition-1 that when the signal x̂ approaches clean signal
x then the gradient G approaches zero. Also each estimate
update x̂(k+1)← x̂(k)−µG (k) is performed in such a way that
‖x− x̂(k+1)‖2 ≤ ‖x− x̂(k)‖2. Hence the proper selection of ∆

and µ also ensures the convergence of the algorithm.

Sensitivity of hyper-parametes ∆ and µ:

Detailed analysis of hyper-parameters ∆ and µ is shown in
the figure: 1, 2, 3 and 4 for translated Gaussian pulse re-
covery. When the analysis is carried out by varying µ , the
other parameter is kept at ∆ = 0.5. Similarly when the anal-
ysis is carried out by varying ∆ , the other parameter is kept
at µ = 0.5. Analysis reveals that increase in µ value result
in early convergence. Better recovery also can be achieved
by increasing value of µ . On the other hand, when µ is
increased beyond unity the algorithm diverges. Algorithms
goes unstable when the value µ approaches unity. So it rec-
ommended to limit the value of µ between zero and unity
(0 < µ < 1) for better performance. Parameter ∆ is appli-
cation specific and shows lesser sensitivity compared to µ .
It is oblivious from the analysis that the increase in ∆ guar-
antee an early recovery and better performance, even if its
value increases beyond unity. But the algorithm goes unsta-
ble, if it is increased beyond a certain limit. The limit de-
pends on the current value of the signal at the position un-
der consideration. Therefore, it is recommended to limit the
value 0 < ∆ < 1 for a stable recovery.
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Fig. 1 Sensitivity of hyper-parameters: Dependence of MSE on µ or ∆

with other parameter fixed at 0.5
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Fig. 2 Sensitivity of hyper-parameters: Dependence of MAE on
µ or ∆ with other parameter fixed at 0.5
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Fig. 3 Sensitivity of hyper-parameters: Number of iterations to reach
a MSE = 10−3 vs µ or ∆ with other parameter fixed at 0.65

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10

20

30

40

Hyperparameters (µ or ∆)

N
o

of
it

er
at

io
n
s

to
ac

h
ie

ve
M

A
E

=
10

-2

No of iterations vs ∆ with µ = 0.5
No of iterations vs µ with ∆ = 0.5

Fig. 4 Sensitivity of hyper-parameters: Number of iterations to reach
a MAE = 10−2 vs µ or ∆ with other parameter fixed at 0.5


