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Projection Operator

Py (x)

Informally, given an arbitrary vector x € RN, the operator
Z y(x) returns the point on the manifold .# that is closest
to x, where closeness is measured in terms of the Euclidean
norm. The projection operator &2 4(.) as euclidean projec-
tion onto .. Note that in a number of applications, & (.)
as euclidean projection onto .# may be quite difficult to
compute exactly. Therefore, we define y-approximate pro-
jection operator as

= min ||x— 1
fe/l”x x” ( )

X= 4@;/()6) = XM, and ||x—x|| < || y(x)—x||+7
()

so that 3”7;/[() yields a vector x € .# that approximately
minimizes the squared distance from x to .Z .

Graident Operator

Let X € RN be the signal having arbitrary missing samples.
The original clean signal x € .#, so that, corrupted signal
can be modelled as

X=x+e, x€.H# A3)

where e is the error due to missing samples. In worst case,
noisy version of signal can be modelled as,

Xp=x+e+n, xe A %)

where 7 is the additive white Gaussian noise present in the
signal. If we project clean signal x onto .#, the result is sig-
nal x itself, whereas the projection of X yields £ = & 4 (%),
Xe M & ||x—X||2 < &, where € is a positive quantity. Let
pi €I for i=1...M are the locations of M missing sam-
ples. For each missing positions at " iteration we form two
signals.

we form two signals.

(6) t0(n)+A iftn=p
X5 (n) = (k) .

29 (n) if n# p;.
(K iBn)—4A ifn=p;
xis(n) = 20 .

29 (n) if n# p;.

where A is the step size. The projection of these signals onto
manifold .# is calculated as

W= 2.461)
=2 ,6M)

The distance between the projected signal and original sig-
nal is measured as

k A(k V(k
a =125 — €4

k Sk
d) = 15— 5%
The gradient is evaluated as
(k) _ k)
d” —d
W (p)=—"1_—_"2_ i=1...M
9% (pi) A Vi )]

¢ will have the same dimension as signal with missing sam-
ples x € RN. The missing values of signal is corrected by
applying correction.

Stability and Convergence

Analysis of stability and convergence of proposed method is
presented. Stability have a direct dependence on the hyper-
parameters and detailed discussion of hyper-parameters is
presented in the section 4.

Theorem 1 Letx =(x1,...Xj...%,) € M withx(j) # 0 and
X=(x1,...Xj...x,) €EZ" be a smgle sample corrupted ver-
sion of x such that xj=0o0rXx(j)=0. Then lfx and £\V) be
two recovered versions of x such that ||x — £ || < ||x— 20|
then the respective gradients defined by (5) will be related

as 90 (j) <9 ().

Proof From the definition or projection operator (1) we have
Hx @/// 0

7)) = #2012

Without the loss of generahty, we can assume that x; > 0,
( ) <x; andx( J) < x; then

\/{ x/(k +A)—(xj—¢& } \/{ xj<k

Xjfé'z)}z
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where € > 0,6 >0& ¢ < &

g0 (j)~ (’ff(k)+4>*<xf*81>2;<fj<")74>+(x/-fez>

g W ()~ BIR

& — €&
2A

Select the parameter A such that % <1

Since ij )

g0 (j)~1—

(6)

< x; and using the definition (6)

GO (j)~1- 858 withe; > 0,6, >0& & < &
Since ||x — £ || < ||x — £V || and using (1) we have,
s <ot = 90() <90

Proposition 1 Ifx=(xi,...x;...x,) € A then the gradient
defined by (5) will be 9% = (0,0,...0).

G0 (j) = [ £:5-2.0(216) | 22—A||f—6—'%/(f—6) I,

where j € {1,2,...n}

When x € M, using the definition (1) we have the distances
%6 — P (Zs5) ||, = || 226 — P (225) ||

4% =(0,0,...0).

According Theorem-1 stability can be achieved, if we choose
parameter A such a way that 21 < 1. Therefore, proper se-
lection of the A will lead to a stable recovery. It is clear from
Proposition- 1 that when the signal X approaches clean signal
x then the gradient ¢ approaches zero. Also each estimate
update £ 2 u¥ k) js performed in such a way that
[lx — £ #1015 < [lx — 8 ||,. Hence the proper selection of A
and u also ensures the convergence of the algorithm.

Sensitivity of hyper-parametes A and :

Detailed analysis of hyper-parameters A and y is shown in
the figure: 1, 2, 3 and 4 for translated Gaussian pulse re-
covery. When the analysis is carried out by varying u, the
other parameter is kept at A = 0.5. Similarly when the anal-
ysis is carried out by varying A, the other parameter is kept
at 4 = 0.5. Analysis reveals that increase in y value result
in early convergence. Better recovery also can be achieved
by increasing value of . On the other hand, when u is
increased beyond unity the algorithm diverges. Algorithms
goes unstable when the value u approaches unity. So it rec-
ommended to limit the value of y between zero and unity
(0 < u < 1) for better performance. Parameter A is appli-
cation specific and shows lesser sensitivity compared to .
It is oblivious from the analysis that the increase in A guar-
antee an early recovery and better performance, even if its
value increases beyond unity. But the algorithm goes unsta-
ble, if it is increased beyond a certain limit. The limit de-
pends on the current value of the signal at the position un-
der consideration. Therefore, it is recommended to limit the
value 0 < A < 1 for a stable recovery.
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Fig.1 Sensitivity of hyper-parameters: Dependence of MSE on i or A
with other parameter fixed at 0.5
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Fig. 2 Sensitivity of hyper-parameters: Dependence of MAE on
U or A with other parameter fixed at 0.5
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Fig. 3 Sensitivity of hyper-parameters: Number of iterations to reach
a MSE = 1073 vs u or A with other parameter fixed at 0.65
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Fig. 4 Sensitivity of hyper-parameters: Number of iterations to reach
a MAE = 1072 vs y or A with other parameter fixed at 0.5



