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1. Morphological clustering

Traditionally, the different morphological shapes of neurons have been qual-
itatively described based on visual inspection and quantitatively described
based on morphometric parameters. Feature extraction results in significant
loss of information, as the dimensionality of the data is significantly reduced.
As a result, a limited set of selected features is not sufficient to capture the
full complexity of the neuronal shapes. On the other hand, a large number of
features will result in overfitting, since the correlated features are accounted
for multiple times. In fact, the feature-based classification of neuronal trees
strongly depends on the set of morphometrics that are used as input. Alter-
native sets of morphometrics result in different classifications [1] for the same
set of cells.

In this section we illustrate the problems of this method with a simple
example. In Fig 1 we present the results of the feature classification for a set
of neuronal trees that belong in three distinct groups (axons, basal and apical
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dendrites). The data used for this grouping are given in Tables 1, 2, 3. The
visual separation of the trees into three groups is presented in Fig S 1A. Even
though two of the most important anatomical features, i.e., the total length
and the total number of branches of the tree, are used, the resulting clustering
does not correspond to the biological grouping (colormap in Fig S 1).
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S 1: Visual separation of trees into groups according to selected morphological features.
Three instances of the clustering are presented using different pairs of features (A: total
tree length - number of branches, B: maximum branch angles - maximum radial distances,
C: average branch order - average asymmetry); the results are not consistent. Inappropriate
feature selection will therefore result in a grouping that does not correspond to the biological
role of the three tree types (axons, apical and basal dendrites) as shown in all three cases.

Alternative feature pairs (maximum branch angles - maximum radial dis-
tances Fig S 1B, average centrifugal branch order [2]- average asymmetry [3]
Fig S 1C) cannot reproduce the biological grouping or the initial classifi-
cation (Fig S 1A). The results of the principal component analysis (PCA-
decomposition) based on the six morphological features are presented in Fig
S 2. We present the three first components with explained variance 96%. Even
though six of the most significant morphological features were used for this
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Table 1: Morphological features (Number of branches, Total length) extracted from the trees
(axons, apicals, basals) presented in Fig S 1A.

Tree ID Num branches Total length(um)
Axon 1 57 3684.24
Axon 2 55 3642.24
Axon 3 39 2750.47
Axon 4 23 1614.04
Apical 1 57 3603.75
Apical 2 37 2776.20
Apical 3 39 2692.38
Apical 4 23 1526.87
Basal 1 41 3017.89
Basal 2 24 1611.49
Basal 3 23 1539.61
Basal 4 23 1615.44

Table 2: Morphological features (Max branch angles, Max radial distances) extracted from
the trees (axons, apicals, basals) presented in Fig S 1B.

Tree ID Max branch angles Max radial distances
Axon 1 2.99 316.97
Axon 2 2.28 428.41
Axon 3 2.90 587.82
Axon 4 2.41 543.14
Apical 1 2.08 448.66
Apical 2 2.17 639.10
Apical 3 2.24 337.68
Apical 4 2.27 202.35
Basal 1 2.27 463.33
Basal 2 2.09 205.11
Basal 3 2.14 168.58
Basal 4 2.49 216.26

Table 3: Morphological features (Mean branch orders, Mean asymmetry) extracted from the
trees (axons, apicals, basals) presented in Fig S 1C.

Tree ID Mean centrifugal branch orders Mean asymmetry
Axon 1 5.12 0.45
Axon 2 4.44 0.46
Axon 3 5.03 0.56
Axon 4 5.48 0.71
Apical 1 5.51 0.42
Apical 2 5.62 0.45
Apical 3 4.82 0.46
Apical 4 3.22 0.25
Basal 1 4.05 0.40
Basal 2 3.00 0.33
Basal 3 3.74 0.44
Basal 4 3.30 0.42
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analysis, the three biological types of trees cannot be retrieved. This obser-
vation indicates that the feature based classification of neuronal trees is very
sensitive to the selected features. As a result, a feature based classification
is not reliable, as the appropriate feature set cannot be generalized across
different groups.
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S 2: Principal component analysis on the normalized values of the six selected morphometrics
of Fig S 1 (total tree length, number of branches, maximum branch angles, maximum radial
distances, average branch order, average asymmetry). The PCA of the selected feature set
is not able to distinguish the correct groups that correspond to the biological role of each
tree, despite the different branching patterns that they present. Hence, inappropriate feature
selection can indeed result in misclassification.

Demonstration of the TMD algorithm
The idea of the TMD algorithm is presented in Figs S 3A. The input of the

TMD algorithm is a rooted tree with a function f defined on the set of nodes.
In this example, the function f is the radial distance. The root, denoted by
R, is shown in red, while the other nodes of the tree are labeled a − i. Note
that the set of nodes consists of the branch points and the leaves. During the
initialization of the algorithm, the leaves (a, c, e, g, h) are inserted into the list
of active nodes, A. The algorithm then iterates over the members of A. The
order of this process is not significant. Recall that the function v assigns to
a node n of the tree the largest value of the function f on the leaves of the
subtree with root at n (see Methods).
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S 3: Demonstration of the TMD algorithm: A simple embedded rooted tree (A) is trans-
formed with the TMD algorithm into the corresponding persistence barcode (B) and the
equivalent persistence diagram (C). The root (R) is colored red, while the branch points and
leaves are shown in green. The edges connecting corresponding pairs of points are presented
by straight lines. The dashed circles are provided as a guide to the eye to indicate different
levels of radial distances. The correspondence between the tree (A) and its extracted bar-
code (B) and its diagram (C) is given by the notation of the same nodes in both figures.
Each bar in (B) represents the lifetime of a component. The positions of x-axis correspond
to the circles in (A) while y-axis represents individual components, ordered according to
their length. In (C) each point represents the birth and death time of a branch component
in A.

The algorithm assigns the values of v on the leaves: v(a) = f(a) = 1, v(c) =
f(c) = 3, v(e) = f(e) = 4, v(g) = f(g) = 5, v(h) = f(h) = 6. Consider the
node a as the first element of the list A. The parent of a is b and its only
other child is c. Since both a and c are in A, the algorithm orders the siblings
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according to the values of function v. The older sibling is c and therefore
v(b) = v(c) = 3. The interval [1, 2] is added to the persistence barcode (Fig
S 3B) TMD(T, f) representing the lifetime of the node a. This interval is
equivalently represented as a point ab on the persistence diagram (Fig S 3C).
Nodes a and c are removed from A, and b is added to A. The next vertex in
the list A is e. The algorithm finds its parent, d, but this node is not processed
further at this stage, since j, the sibling of d, is not in A. The next node to
be processed is g. Both children g and h of j are in A. The oldest child is h
and therefore v(j) = v(h) = 6. The interval [5, 4], representing the lifetime of
node g, is added to TMD(T, f). The node j is added to A, and both g and h
are removed from A. The list of alive components then consists of b, e, j. The
node b cannot be processed since its sibling d is not in A. The next node to
be processed is therefore e, whose parent d has all of its children in A. In this
case, the node with highest value of v is j, and therefore v(d) = v(j) = 6.
The interval [4, 3] is added to TMD(T, f). Then nodes e and j are removed
from A, and d is added to A. The next node in A is b, whose parent is i. Since
both children of i are now in A, the algorithm finds the older sibling, d and
assigns v(i) = v(d) = 6. The interval [3, 1] is added to TMD(T, f) and d, b are
removed from A, while i is added to A. The only alive node is now i whose
parent is the root R. The algorithm computes v(R) = v(i) = 6, i is removed
from A and R is added in A. Since only the root R is alive, the while loop in
the algorithm terminates. The last step adds the interval [6, 0] to TMD(T, f),
which represents the largest component of the tree.

2. Using alternative functions for the TMD algorithm

In the previous section, we applied the TMD algorithm with the radial
distance as the filtration function f . Any alternative function f can be used,
such as the path distance from the root, which should serve to reveal shape
characteristics that are independent of the radial distance and thus not cap-
tured by this approach. The constraint of rotational invariance could also be
relaxed by projecting the radial distance to a selected axis, to map the spher-
ical filtration into an ellipsoidal one, in order to study the relation of a tree’s
spatial density to its embedding space.

Depending on the classification problem, alternative morphometrics could
be more appropriate for the separation of trees in classes. For instance, the
path distance Fig S 4A would be more appropriate to capture the differences
between tortuous and straight trees, while the projected radial distance Fig
S 4C can discriminate trees with different spatial distribution of branches. In
Fig S 4 we present four variations of the TMD using different morphometrics
(radial distance from the soma (A), path distance from the soma (B), pro-
jected to the axis towards the pia radial distance (C), branch orders). Each
morphometric captures different properties of the branching structure. Those
and other morphometrics could be combined in a multidimensional persistence
diagram for the better discrimination of trees.
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S 4: Demonstration of TMD algorithm for different morphological features. A. Radial dis-
tance from the soma. B. Path distance from the soma. C. Projected radial distance from the
soma to the axis normal to the pia; this measurement can discriminate trees with different
spatial distributions. D. Branch order; this measurement does not take into account the em-
bedding in space, only the combinatorial branching patterns of the tree. Note the similarity
among the three first morphometrics.

3. Definition of distances

In order to establish the comparison with the current literature we need to
define a notion of distance between trees equipped with a real-valued function
on their nodes, as well as a notion of distance between persistence diagrams.

3.1 Distances between persistence diagrams

Below we recall various representations of persistence diagrams and some no-
tions of distance between them. We also provide a reference to software that
computes the distances considered, when available. All of the metrics summa-
rized below can be applied directly to the output of the TMD algorithm.

The most classical distances used in topological data analysis are the bot-
tleneck and Wasserstein distances. Given a persistence diagram D, the points
in the diagonal are “virtual” points, which have birth time equal to their
death time. Therefore, we assume without loss of generality that a persistence
diagram contain points in the diagonal with infinite multiplicity. Given two
persistence diagrams D1 and D2, we construct a matching (i.e., a bijection)
φ : D1 → D2 and define two numbers
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Bφ = sup
x∈D1

d(x, φ(x))

and

W p
φ = (

∑
x∈D1

d(x, φ(x))p)
1
p ,

where d is the standard Euclidean distance in R2. Note that Bφ is simply
the longest distance that φ shifts a point in D1, while (W p

φ )p is a sum of p-
th powers of lengths of the line segments joining x and φ(x), for all x. The
infimum of Bφ over all possible matchings is the bottleneck distance betweenD1

and D2. The infimum of W p
φ over all possible matchings is the p−Wasserstein

distance between D1 and D2. Given two persistence diagrams D1 and D2, their
bottleneck distance will be denoted by dB(D1, D2) and their p−Wasserstein
distance by Wp(D1, D2). One implementation of these distances is given in [13]
and a faster approximation in [14].

A persistence diagram can also be represented by a persistence landscape,
i.e., a piecewise linear function L : R × N → R. Given two persistence land-
scapes, we can compute the distance between them in Lp space [15]. The
implementation is described in [16].

One can also encode persistence diagrams by unweighted persistence im-
ages as described in the main text. The idea is to apply a smoothing function,
i.e., a Gaussian kernel, at every point of the diagram and then to discretize
the distribution obtained into a pixel-based image. It is then straightforward
to compute a distance between two unweighted persistence images, using com-
mon image-recognition techniques. A simplified version of this representation is
used in the classification of morphological types of neurons in the experimental
section of this paper. We are not aware of a publicly available implementa-
tion of this approach. An implementation is provided with the software of this
paper.

3.2 Distances between trees

A classic metric to compare trees, the edit distance [8], is based on the trans-
formation of one tree T1 into another T2 by a sequence of operations (deletion
and insertion of vertices), each of which has a non-negative cost. The edit dis-
tance [8] between T1 and T2 is defined to be the infimum of the total cost of
all possible transformations from T1 to T2. However, the edit distance is not
relevant to our problem, since it does not involve geometric information about
the tree structure and is known to be NP-complete [17].

An important notion of distance is the one between merge trees as defined
in [18] and [19]. This distance is applied to merge trees of sublevel sets of
functions. For a function f : X → R, where X is a metric space, the sublevel
set at level a ∈ R is {x ∈ X|f(x) ≤ a}. The differences captured by merge
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trees are considerably more subtle than the differences captured by the per-
sistent homology of the function’s sublevel sets. The authors of [18] and [19]
provide examples of pairs of simple merge trees T and T ′ that have the same
persistence diagrams, but that are a nonzero distance apart. It is clear that
in this particular case, the TMD would provide the persistent homology of
the sublevel sets of the function. Therefore, by rescaling T and T ′, the differ-
ence between the distances used in those papers and the distances used in the
current paper can get arbitrarily large.

Another relevant metric is the persistence distortion distance [12] between
two graphs G1 and G2. To compute this distance one must calculate the short-
est path distance from a fixed point to any other point in the tree for all
v1 ∈ G1, denoted P (G1, v1), and all v2 ∈ G2, denoted P (G2, v2). Given the
shortest paths, the persistence distortion is defined as the minimal bottleneck
distance between the persistence diagrams in dimension zero of the superlevel
sets of the distance functions P (G1, v1) and P (G2, v2). The persistence di-
agrams obtained in the process are conceptually very close to the diagrams
we get from the TMD algorithm. In our case, we obtain a significant com-
putational advantage from working with rooted trees, since there is always a
unique path between every pair of vertices. Moreover a reasonable choice of
initial vertices v1 and v2 from which to compute shortest paths is to take the
root of the trees considered, given that this is the computational center of the
neuron. In this case, the persistence diagram arising when computing the per-
sistence distortion distance is the one we would get from the TMD algorithm
when the function f is the path distance from the root. The computational
cost of the distortion distance is considerable in the general case, but linear
in our case. However, since the persistence distortion distance is based on the
bottleneck distance, it suffers from that metric’s limitations, i.e., the shortest
components, which are important for the neuronal morphologies, are not taken
into account. The code to compute persistence distortion distance is available
here [20].

3.3 Distances between neurons

Strahler ordering [5], [6], a metric introduced for the study of a river’s branch-
ing patterns, assigns a number to each branch of the tree, starting from the
terminal branches (order 1) and increasing the ordering when branches of the
same order merge. Strahler ordering analysis is similar to the TMD-algorithm
because it starts from the terminal branches of the tree and proceeds from
the outer branches towards the root. However, since the embedding of the tree
is not considered, branches of different lengths are treated equally and their
spatial distribution cannot be studied. The advantage of Strahler ordering is
that the overall branching topology of the tree is captured in a single value and
hence the comparison between trees is straightforward. However, depending on
the branching structure, very complicated neuronal trees can be assigned low
Strahler orders (for example a Hippocampus pyramidal cell can be of Strahler
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order 4, see [6], Figure 3) so they are inseparable from simpler structures. This
is once again due to the significant information loss of this analysis.

Sholl analysis [7] is a typical measurement used to study neuronal mor-
phologies. It counts the number of segments that intersect with a set of equidis-
tant spheres {S0, S1, S2, ..., Ss} of increasing diameters {0, sd, 2sd, ...}. Because
of the high frequency of local fluctuations, the choice of the diameter step sd
has a significant impact on the result of this analysis. While the Sholl anal-
ysis counts the number of components at each level, the persistence diagram
of a tree T tracks the evolution of those components in space. As a result,
the persistence diagram of a tree contains strictly more information than the
Sholl analysis. In fact, the Sholl analysis can be retrieved from the TMD of
a tree using a discretized version of distance dBar, which is defined in Meth-
ods. Similarly to the Sholl analysis the dBar distance encodes the number of
components of the tree for a set of spheres of increasing diameters with a few
significant differences. First, dBar does not depend on a choice of diameter
step, so it is not subject to local fluctuations. In addition, the distance dBar
counts the number of intersections of the branches of a tree with a sphere, as
opposed to the segments that are counted in Sholl analysis. As a result, this
distance is equivalent to a continuous version of Sholl analysis that processes
the branches of the tree. This distance collapses the barcode structure into
one dimension which results in significant information loss. As a result, it is
not appropriate to distinguish subtypes of trees that express similar branching
structures, such as subtypes of pyramidal cells (Figure 5).

A novel metric that is useful for distinguishing neuronal trees was proposed
in [4]. Blastneuron focuses on the comparison of neurons based on the align-
ment of the branches by topology and path shapes after first defining similar
neurons on the basis of their morphometrics. A set of morphological features
is extracted from the trees, and the initial estimation of the distance between
them is defined by the distance between the extracted features. An alignment
algorithm is then applied to pairs of trees in order to identify local similar-
ities. The local alignment requires the comparison of all pairs of branches,
making the computation very expensive. This method is designed for the effi-
cient matching of trees with highly similar structures, but the high variability
within the groups of rat cortical neurons does not allow similar trees to be
grouped together by local alignment, since local structures are often altered,
depending on the location of the cells in the tissue.

The most recent advance in the field was made by sequence representa-
tion [9], an original encoding of trees as sequences of characters ‘ACT’ repre-
senting the local topology. Bifurcations are encoded on the basis of whether
their children branch or terminate. Arborizing bifurcations (in which both
child branches bifurcate) are encoded with the letter ‘A’, bifurcations with
one bifurcating child and one terminating are encoded as ‘C’ and terminating
bifurcations (with two terminating children) as ‘T’. This method enables us
to align different trees via Sequence-based Tree Alignment, which can be used
for the assignment of a similarity score between trees, using cluster analysis.
Furthermore, this method is useful for the generation of a consensus repre-
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sentation [10] from a group of neurons that reveals the conserved structural
properties of the corresponding trees. This technique is the closest existing
method to the proposed TMD, since it reveals the topological properties that
are persistent throughout a group of trees. However, the TMD takes into
account the embedding of the tree in space preserving the relation between
the short and long components of the tree. Furthermore, the TMD algorithm
has a computational advantage over the highly computationally demanding
sequence alignment techniques.

4. Stability of TMD

Let T denote a finite rooted tree with vertex set N containing a distin-
guished root R, which endows each edge of T with a natural orientation away
from the R. Let f : N → R be any function satisfying f(n) > f(R) for all
n 6= R in N , i.e., f takes its lowest value at the root R. A pair (T, f), where
T is a rooted tree (not assumed to be embedded in any ambient space) and f
is a function satisfying the condition above, is referred to as a TMD-pair.

In this section we prove that the TMD algorithm that associates with a
TMD-pair (T, f) a persistence diagram TMD(T, f) is robust under the type
of perturbations of the tree T and the function f that are most likely to arise
in the reconstruction process, i.e., the transformation of a physical tree-like
object, such as a neuron, into input data for the TMD algorithm. We consider
two types of reconstruction errors:

E1. error in measuring the exact placement of a node, and
E2. omission or addition of a small branch.

Errors of type E2 may have the effect of changing the tree considered,
which implies that the function f defined on its nodes takes on new values or
loses a few of its previous values. Errors of type E1 may affect the values of
the function f on the nodes of the tree, though the abstract graph underlying
the tree remains the same.

We now define four types of perturbations of TMD-pairs that will be con-
sidered admissible for our purposes. If T is a tree, then by “adding a branch”
to T , we mean attaching a new branch to any node of T or adding a node
to the interior of an existing branch of T and attaching a new branch to that
node.

Definition 1 Fix a TMD-pair (T, f) and a real number ε > 0. An elementary
ε-perturbation of (T, f) is a TMD-pair (T ′, f ′) obtained from (T, f) by one of
the following operations.

T1. T = T ′, f(R) = f ′(R), and for all n 6= R, |f ′(n)− f(n)| < ε.
T2. T ′ is obtained from T by adding a branch at a node n of T , f ′(n) = f(n),

and |f ′(n′) − f(n)| < ε, where n′ is the added leaf (univalent node). The
restriction of f ′ to the nodes of T is equal to f .

T3. T ′ is obtained from T by adding an internal node n′ on an existing edge
in T , with incident nodes u and v, and a branch at n′ with leaf n′′, such
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that |f ′(n′) − f ′(n′′)| < ε, while f ′(n′) lies between f(u) and f(v), or
|f ′(n′)−f(u)| < ε, or |f ′(n′)−f(v)| < ε. The restriction of f ′ to the nodes
of T is equal to f .

T4. T ′ is obtained from T by removing a branch with incident nodes n′, n′′,
where n′′ is a leaf, such that |f(n′) − f(n′′)| < ε. The function f ′ is the
restriction of f to T ′.

A TMD-pair (T ′, f ′) is said to be an ε-perturbation of (T, f) if (T ′, f ′) is
obtained from (T, f) by

i) performing operations of type T1 on a subset of the set of nodes of T , and
then

ii) performing a finite number of operations of types T2, T3, and T4 on the
resulting tree, such that every branch that is present in T ′ but not in T is
a leaf, and the following condition holds.
– If nodes {vi}ti=1 are added via operations of type T3 to a branch in T

with incident nodes u and v, then the deviation from linear order of
the values f ′(vi) according to the position of the vi on the branch is
smaller than ε for every pair of adjacent nodes.

Let Pε(T, f) = {(T ′, f ′) | (T ′, f ′) is an ε-perturbation of (T, f) }

Example 1 Let T be a rooted tree embedded in R3, and let f be the real-valued
function that assigns to a node n in T its Euclidean distance to the root R. An
elementary ε-perturbation of type T1 corresponds to moving nodes in space
by at most ε. Elementary perturbations of types T2, T3 and T4 correspond
to removing branches from or adding branches to T , such that the distance
between their nodes is at most ε. At the end of this section we observe that in
fact any TMD-pair can be thought of as arising in this way.

The following definition is standard in the literature.

Definition 2 Let T be a rooted tree with root R. The depth of a node n in
T is the number of edges in the unique path connecting n to R. The depth of
a tree T is the maximum depth of a node in T .

A tree of depth 1 is said to be a corolla. Let T be a corolla with root
R and leaves l1, . . . lm. Let mi denote the multiplicity of the value f(li), for
1 ≤ i ≤ k, where l1, ..lk are the leaves on the function f assumes distinct values.
The persistence diagram associated to (T, f) through the TMD algorithm has
the form

TMD(T, f) =
{(
f(li), f(R)

)mi | 1 ≤ i ≤ k
}
∪D,

where (x, y)j denotes the point (x, y) with multiplicity j, and D is the di-
agonal. If the values of function f are non-negative, then it suffices to consider
D as the first quadrant diagonal.
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S 5: A. Illustration of a T-corolla tree and an associated tree with basis the corolla tree. B.-
C. Small perturbations in the structure of the tree: B) type E1: the node’s h position has
been moved by ε to the node h′. This figure illustrates one of the possible perturbations, that
will be used for the proof of stability of the TMD algorithm. C) type E2: ε small branches
have been added to the tree. This figure illustrates one of the possible perturbations, that
will be used for the proof of stability of the TMD algorithm.
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Let T be any tree of depth h and root R. For a node n ∈ T , recall that Tn
denotes the subtree of T starting at n, considered as a rooted tree with root
n. In particular TR = T and for any n 6= R, Tn is a tree of depth strictly less
than h.

Let n1, . . . nm be the nodes in T of depth 1 (i.e., the children of R). For
every i, let

bi = max{x | (x, y) ∈ TMD(Tni
, f)}

(i.e., bi is the largest value of f on a node of Tni). Then for each i the point
(bi, f(ni)) is in the persistence diagram TMD(Tni , f), and one easily observes
that

TMD(T,f)=
{

(bi, f(R)) | 1 ≤ i ≤ m
}
t
∐m
i=1 TMD(Tni

, f) \
{

(bi, f(ni)) |
1 ≤ i ≤ m

}
We can now establish the stability of the TMD algorithm with respect to

bottleneck distance under ε-perturbations of TMD-pairs.

Theorem 1 Let (T, f) be a TMD-pair, and let ε > 0. If (T ′, f ′) is an ε-
perturbation of (T, f), then

dB
(
TMD(T, f), TMD(T ′, f ′)

)
≤ 3ε.

Proof The proof proceeds by induction on the depth of T , separating the
cases in which T ′ is obtained from T through operations of type T1, T2, or
T3. Since any set of operations of type T4 reverses a corresponding set of
operations of types T2 and T3, and since bottleneck distance is a metric (and
hence symmetric), the effect of perturbations of type T4 will be discussed only
briefly.

Perturbations of type T1.

If (T ′, f ′) is a TMD-pair obtained from (T, f) by perturbations of type T1,
then the depth of T is equal to the depth of T ′. For every node n in T , we
denote by n′ the corresponding node in T ′. To compute an upper bound on
the bottleneck distance between TMD(T, f) and TMD(T ′, f ′), we construct a
specific type of matching between their persistence diagrams. Recall that

TMD(T, f)=
{ (

bi, f(R)
)
| 1 ≤ i ≤ m

}
t
∐m
i=1 TMD(Tni , f)\

{(
bi, f(ni)

)
|

1 ≤ i ≤ m
}

and

TMD(T’, f’)=
{ (

b’i, f
′(R′)

)
| 1 ≤ i ≤ m

}
t
∐m
i=1 TMD(T ′n′

i
, f ′)\

{(
b′i, f

′(n′i)
)
|

1 ≤ i ≤ m
}
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We show by induction on the depth of T that there exists a matching
between TMD(T, f) and TMD(T ′, f ′) such that

(
bi, f(R)

)
is matched with(

b′i, f
′(R′)

)
for every i and such that the L∞-distance between each pair of

matched points is less than ε, from which we deduce that the bottleneck dis-
tance bewteen TMD(T, f) and TMD(T ′, f ′) is also less than ε.

For the base step of the induction we consider a corolla T , with root R and
leaves l1, . . . , lm, whence T ′ is also a corolla with root R′ and leaves l′1, . . . , l

′
m.

It follows that

TMD(T,f)=
{(

ui, f(R)
)mi | 1 ≤ i ≤ k

}
∪D,

and

TMD(T’,f’)=
{(

u’i, f
′(R′)

)m′
i | 1 ≤ i ≤ k′

}
∪D,

where {ui | 1 ≤ i ≤ k} is the set of values of f on the nodes of T (other
than the root R), and mi is the multiplicity of ui, for 1 ≤ i ≤ k, while
{u′i | 1 ≤ i ≤ k′} is the set of values of f ′ on the nodes of T ′ (other than the
root R′), and m′i denotes the multiplicity of the value u′i, for 1 ≤ i ≤ k′.

Condition T1 implies that |f(li) − f ′(l′i)| < ε for all 1 ≤ i ≤ m and
|f(R)−f ′(R′)| < ε and thus the L∞-distance between the points

(
f(li), f(R)

)
and

(
f ′(l′i), f

′(R′)
)

is less than ε. Matching
(
f(li), f(R)

)
with

(
f(l′i), f

′(R′)
)

for every 1 ≤ i ≤ m, we see that ε is an upper bound on the bottleneck distance
between TMD(T, f) and TMD(T ′, f ′) in this case, i.e.,

dB
(
TMD(T, f), TMD(T ′, f ′)

)
< ε.

The constructed matching is of the desired type.
Suppose now that the inductive hypothesis holds for all TMD-pairs (T, f),

where T is a tree of depth less than h, and all (T ′, f ′) ∈ Pε(T, f) obtained
by perturbations of type T1. Let (T, f) be a TMD-pair where T is a tree of
depth h. Assume that (T ′, f ′) ∈ Pε(T, f) is obtained by perturbations of type
T1 from (T, f).

For each 1 ≤ i ≤ m, let

C =
{(
bi, f(R)

)
| 1 ≤ i ≤ m

}
,

C ′ =
{(
b′i, f

′(R′)
)
| 1 ≤ i ≤ m

}
,

Di = TMD(Tni
, f) \

{(
bi, f(ni)

)}
, and

D′i = TMD(T ′n′
i
, f ′) \

{(
b′i, f

′(n′i)
)}
.

Matchings betweenDi andD′i for every i and a matching between C∪D and
C ′∪D together give rise to a matching between TMD(T, f) and TMD(T ′, f ′),
from which we can compute an upper bound on dB

(
TMD(T, f), TMD(T ′, f ′)

)
.

Since (T ′n′
i
, f ′) is an ε-perturbation of (Tni , f) of type T1 for all i, and each

Ti is of depth less than h, the inductive hypothesis implies that for all i, there
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is a matching between TMD(Tni , f) and TMD(T ′n′
i
, f ′) such that

(
bi, f(ni)

)
is matched with

(
b′i, f

′(n′i)
)

and such that the L∞-distance between each pair
of matched points is less than ε. By removing the matched pairs of points(
bi, f(ni)

)
and

(
b′i, f

′(n′i)
)
, we obtain a matching between Di and D′i such

that the L∞-distance between every pair of matched points is less than ε.
Moreover, the argument for the corolla case shows that there is a matching
between C ∪D and C ′ ∪D that matches

(
bi, f(R)

)
with

(
b′i, f

′(R′)
)

for every
i and such that the L∞-distance between every pair of matched points is less
than ε. The union of these two matchings gives rise to the desired matching
between TMD(T, f) and TMD(T ′, f ′) that satisfies the inductive hypothesis.
In particular,

dB
(
TMD(T, f), TMD(T ′, f ′)

)
≤ max

({
dB
(
Di, D

′
i

)
| 1 ≤ i ≤ m

}
∪

{dB(C,C ′)}
)
< ε.

Perturbations of type T2.

Let (T ′, f ′) ∈ Pε(T, f) be a TMD-pair obtained from (T, f) by perturba-
tions of type T2. To set our notation, let {ni}mi=1 denote the set of all nodes
in T different from the root R. Let {ni}ri=1 (r ≤ m) denote the nodes where
new branches were added. For each 1 ≤ i ≤ r, let {ui,k}qik=1 denote the new
nodes resulting from adding new branches at the node ni. Finally let, {zs}ns=1

denote the nodes added to T ′ as a result of adding branches at the root R.
Thus the nodes in T ′ are

{R, n1, . . . , nr, nr+1, . . . , nm} ∪ {ui,k | 1 ≤ k ≤ qi, 1 ≤ i ≤ r} ∪ {zs | 1 ≤
s ≤ n}.

With this notation, Condition T2 ensures that f(R) = f ′(R), and

– for all 1 ≤ i ≤ m, f ′(ni) = f(ni), and for all 1 ≤ i ≤ r and 1 ≤ k ≤ qi,
|f ′(ui,k)− f ′(ni)| < ε, and

– for all 1 ≤ s ≤ n, |f ′(R)− f ′(zs)| < ε.

As in the previous case, the proof is carried out by induction: we prove
the statement first in the case where T is a corolla, and then move on to the
general case.

Assume T is a corolla. The persistence diagram for (T, f) has the form:

TMD(T, f)=
∐m
i=1(f(ni), f(R)) ∪D,

where D is the diagonal. On the other hand, the persistence diagram for
(T ′, f ′) has the form:

TMD(T’, f’)=
∐m
i=r+1

(
f ′(ni), f

′(R)
)
t∐r

i=1

(
f ′(ui,ki), f

′(R)
)
t L t

∐n
s=1

(
f ′(zs), f

′(R)
)
∪D,
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where for each 1 ≤ i ≤ r, ui,ki is a node on which f ′ obtains a maximal
value among all nodes {ui,k}qik=1, and L is a collection of points of the form
(ni, ui,j) for those j 6= ki such that f ′(ni) > f ′(ui,j), and (ui,j , ni) for j 6= ki
such that f ′(ni) < f ′(ui,j). There is an obvious matching between the sets∐m

i=1(f(ni), f(R)) in TMD(T, f) and

∐m
i=r+1

(
f ′(ni), f

′(R)
)
t
∐r
i=1

(
f ′(ui,ki), f

′(R)
)

in TMD(T ′, f ′),

and the distance between any pair in this matching is bounded above by
ε by Condition T2. All other points are at L∞-distance at most ε from the
diagonal. Hence matching those points to the diagonal gives an upper bound
of ε on the bottleneck distance in this case.

For the induction step, let T be a tree of depth h with root R, where the
nodes of depth 1 are denoted l1, . . . , lm. For each 1 ≤ i ≤ m, let Tli denote the
subtree of T with root li. Let xi = Tliargmaxf for each i. Let TMD0(Tli , f)
denote the sub-diagram of TMD(Tli , f) consisting of all points except the
unique one with f(li) as its y-coordinate. The persistence diagram for T is of
the form

TMD(T, f)=
∐m
i=1 TMD0(Tli , f) t

∐m
i=1

(
f(xi), f(R)

)
∪D.

Let T ′ be a rooted tree obtained from T with operations of type T2. For
each i, let T ′li denote the subtree of T ′ with root li. As above,

TMD(T’, f’) =
∐m
i=1 TMD0(T ′li , f

′) t
∐m
i=1

(
f ′(yi), f

′(R)
)
t∐n

s=1

(
f ′(zs), f

′(R)
)
∪D,

where yi = T ′liargmax(f ′) for each 1 ≤ i ≤ m.

Notice that ifD1, D
′
1, D2, D

′
2 are persistence diagrams such that dB(Di, D

′
i) ≤

δ for some δ > 0 and for i = 1, 2, then dB(D1 tD2, D
′
1 tD′2) ≤ δ. This obser-

vation and the induction hypothesis together show that

dB(
∐m
i=1 TMD0(Tli , f),

∐m
i=1 TMD0(T ′li , f

′)) ≤ ε.

Clearly, yi − xi ≤ ε for each 1 ≤ i ≤ m. Thus it follows that matching
the points (xi, f(R)) and (yi, f

′(R)) for each 1 ≤ i ≤ m does not increase
the distance between the corresponding sub-diagrams. Finally notice that each
point of the form (f ′(zs), f

′(R)) is of L∞-distance at most ε from the diagonal.
Putting these observations together we conclude that

dB(TMD(T, f), TMD(T ′, f ′)) ≤ ε,

as claimed.
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Perturbations of type T3.

Let (T ′, f ′) ∈ Pε(T, f) be a TMD-pair obtained from (T, f) by perturba-
tions of type T3. To set our notation for this case, let {vj}tj=1 denote the new
(internal) nodes added to T , i.e., the vj are the nodes in T ′ where a branching
point occurs that is not present in T . For each 1 ≤ j ≤ t, let {wj,l}

pj
l=1 denote

the new nodes resulting from adding branches at vj .
Condition T3 ensures that f(R) = f ′(R) and that the following statements

hold.

– For all 1 ≤ j ≤ t, f ′(vj) is either an intermediate value between the values
of f on the nodes incident to the edge along which vj was added, or f ′(vj)
is no more than ε away from the value of f on at least one of those nodes.

– For all 1 ≤ j ≤ t, and all 1 ≤ l ≤ pj , |f ′(wj,l)− f ′(vj)| < ε.

Notice also that the values of f ′ on new nodes added on a single branch in
T satisfy the extra linear ordering condition in Definition 1.

Once more, we start by assuming T is a corolla. As before, in this case,

TMD(T, f) =

m∐
i=1

(f(ni), f(R)) ∪D,

where D is the diagonal. For each 1 ≤ i ≤ m, let ei denote the i-th branch
in T , and let e′i denote the branch of T ′ corresponding to ei. It follows that e′i
either is identical to ei or contains one or more new branching points. Notice
that TMD(T, f) =

∐m
i=1 TMD(ei, f |ei) ∪ D, and similarly that TMD(T ′, f ′)

=
∐m
i=1 TMD(e′i, f |e′i)∪D. Hence it suffices to prove the claim for m = 1, i.e.,

when T is a corolla with exactly one leaf.
Let T consist of the root R and a node n with a single edge between them.

Let {vj}tj=1 denote the internal nodes added in T ′, and let {wj,l}
pj
l=1 denote the

leaves added at vj . For nodes vj such that f ′(vj) is not intermediate between
f(n) and f(R), condition T3 guarantees that the value of f ′ on those nodes
and their branches is at most 2ε away from f(n). Indeed, notice first that
f ′(vj) cannot be smaller than f(R), by hypothesis. Hence the only way for
f ′(vj) not to be intermediate is to have f ′(vj) > f(n). If this is the case, then
|f ′(wj,l) − f(n)| < 2ε. On the other hand, for nodes vj such that f ′(vj) is
an intermediate value between f(n) and f(R), the contribution of an added
leaf with end node wj,l to TMD(T ′, f ′) is easily seen to be L∞-distance at
most ε from the diagonal. Thus, let u be a node in T ′ such that f ′(u) is
maximal (possibly u = n). Then the point (f ′(u), f ′(R)) can be matched with
(f(n), f(R)). It is now easy to observe that all remaining points in TMD(T ′, f ′)
are of L∞-distance at most ε from the diagonal, and hence can be matched
with diagonal points, so that the claim for the corolla follows.

The induction step now follows very similarly to the case of perturbations
of type T2. Hence in this case we obtain once more
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dB(TMD(T, f), TMD(T ′, f ′)) < 2ε.

Perturbations of type T4.

Let (T ′, f ′) ∈ Pε(T, f) be a TMD-pair obtained from (T, f) by perturba-
tions of type T4. Reversing the roles, (T, f) is a TMD-pair obtained from
(T ′, f ′) by perturbations of type T2 and T3. Hence by the discussion of per-
turbations of these types

dB(TMD(T, f), TMD(T ′, f ′)) < 2ε.

Conclusion.

We are now ready to complete the proof of the theorem. Notice that per-
turbations of types T2, T3, and T4 can be performed on a TMD-pair (T, f)
simultaneously without any complications. Hence if (T ′, f ′) is a TMD-pair
that results from (T, f) by applying these operations, then the bottleneck dis-
tance between the corresponding persistence diagrams is bounded above by
2ε. Adding perturbations of type T1 and using the triangle inequality for
bottleneck distance, we conclude that

dB(TMD(T, f), TMD(T ′, f ′)) ≤ 3ε

for all (T ′, f ′) ∈ Pε(T, f).
Note that errors in the connectivity of the tree are not considered. When

the connectivity is modified, the new tree T ∗ will have a different topology.
Therefore it is not possible to ensure that T and T ∗ will be ε-close and as a
consequence TMD(T ) and TMD(T ∗) are not restricted to be ε-close.

A geometric interpretation.

We finish the section by observing that Example 1 is generic, in the sense
that every TMD-pair (T, f) can be thought of as a rooted tree embedded
in R3, with f the function given by radial distance from the root. Indeed,
since we assume that f(R) is the absolute minimal value of f on the nodes
of T , there is no loss of generality in assuming that f(R) = 0. Since the
set of nodes of the T is finite, the function f takes on finitely many values
0 < a1 < · · · < ar. Identify R with the origin in R3, and embed the set f−1(ai)
into the sphere of radius ai about the origin for each i. Connect by a straight
line each pair of points corresponding to nodes in T that are connected by an
edge. Compactness of a finite union of line segments allows the transformation
of this into an embedding by small perturbations, without moving points off
of the sphere of radius ai. The function f is now given by radial distance from
the origin.



20 Lida Kanari et al.

5. Random trees

5.1 Random tree generation
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S 6: Random tree generation. Definition of growth parameters of artificial random trees:
each tree is a perfect binary tree, which consists of branch points and leaves. A random
walk defines the edges that connect pairs of points on the tree. The order of a branch is
defined as the number of bifurcations between the branch point (or leaf) and the root. The
tree depth is the maximum branch order of a tree. The branch length is the length of each
edge. The branch angle defines the bifurcation angle between two children of a branch point.
The degree of randomness indicates if the edge is a straight line or a simple random walk.

The random trees that were used for testing the TMD algorithm’s performance
were generated with software developed within the Blue Brain Project (BBP).
Each tree consists of branches, i.e., paths between two branch points, which
are generated based on a simple random walk (SRW, [21]) in R3. The position
of the walk at each step is given as a weighted sum of a predefined direction
dn and a simple random walk Ψ :

Xn+1 = Xn + ws · ((1−Dr) · dn +Dr · Ψ) ,

where ws is the step size, and Dr defines the randomness of each step and Ψ
is a random vector in R3 sampled from a uniform distribution. For Dr = 0 the
branch is a straight line, while for Dr = 1 the branch is a SRW. The number
of steps is given by the preselected branch length Bl. Once the number of
steps is reached, the tree bifurcates, i.e., two new branches are created. The
angle between the initial points of the branches is defined by the branch angle
Ba. The tree generated this way is a perfect binary tree, i.e., every leaf has
the same depth, since new branches are added at every branch point until the
preselected tree depth Td (i.e., the maximum number of edges in the unique
path from a leaf to the root R) is reached. The total number of branches in the
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tree is then 2Td − 1. For example, the tree in Fig S 6 has Td = 4 and consists
of 24 − 1 = 15 branches.

This set of parameters {Td, Bl, Ba, Dr} defines the global properties of the
tree. Random trees that are generated with the same set of parameters share
common morphometric properties, but have unique spatial structures, due to
the stochastic component of the growth. This allowed us to check the effec-
tiveness of the algorithm at identifying sets of trees that have been generated
with the same input parameters {Td, Bl, Ba, Dr} and that differ only in the
random seed. Random trees constructed with the described algorithm can in-
tersect geometrically, even though the probability of this event is very low.
However, for the random tree generation, the connectivity is obtained from
the branches of the tree and therefore even if branches intersect geometrically,
no cycle will be created in the tree.

5.2 Grouping random trees

We defined a control group as a set of trees generated with fixed parameters
(Td = 5, Bl = 10, Ba = π/4, Dr = 10%) but independent random seeds.
Then, we varied each parameter individually to generate groups of trees that
differed from the control group in only one property. For all trees we extracted
the persistence barcode using the TMD algorithm. The assignment of a tree
to a group based on the comparison of the distances dBar between the tree’s
barcode and the barcodes of the trees in every group constitutes one trial. The
trial is successful if the tree is correctly assigned to its original group. The per-
formance of the TMD-based classifier in separating groups of trees generated
with different values for each of the described parameters is summarized in
Table 4. We cross-validate our method by generating 100 trees for each group,
divided into 5 subsets of 20 trees. The standard deviation in Table 4 shows
the statistical significance of our results.

Table 4: Summary of accuracy results for the classification of random trees.

Td : (4, 6, 8) Ba : (π
4
, π
2
, π) Bl : (5, 10, 30) Dr : (0.1, 0.5, 0.8) Ab : (0.0, 0.3, 0.9)

96 ± 3% 88 ± 9% 96 ± 4% 99 ± 1% 100 ± 0%

The variation of the previous parameters includes only quantitative mor-
phological features. All the generated trees are binary trees. In order to assess
the performance of the TMD algorithm at grouping trees with different asym-
metries, we generated trees with the same morphological features: number of
terminal branches (16), branch lengths(100um), branch angles(π/3) and de-
gree of randomness(0.1) but different degree of asymmetry as defined in [3].
Trees with different degree of asymmetry express different topology of their
branching patterns, the probabilities of which are described in [3]. The results
of this analysis are presented in Fig S 11 for asymmetries of 0.0, 0.3, 0.9.



22 Lida Kanari et al.

The influence of each morphological feature (tree depth, branch length,
branch angles, degree of randomness and degree of asymmetry) on the corre-
sponding persistence barcode is described in detailed in Figures S 7 - S 11.
The TMD-based classifier is able to distinguish the variation of all five pa-
rameters with significantly high accuracy. This indicates that the TMD-based
distance is effectively separating artificial random trees that differ in one of
the described morphological properties.
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S 7: Groups of trees with different tree depths (4(A), 6(B), 8(C)) can be effectively separated.
Larger tree depths result in larger number of branches on the tree (Nbranches = 2Td − 1).
As a result the density of branches increases with the tree depth, and a larger number of
topological components is generated in the respective persistence barcodes. The distance
matrix (D) indicates the existence of three groups that are identified with high accuracy by
a simple dendrogram (E).
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S 8: Groups of trees with different constant branch lengths (5(A), 10(B), 30(C)) can be
effectively separated. The length of the branches is reflected in the lengths of the topological
components in the respective persistence barcodes. The increasing branch length results
in the presence of bars at larger radial distances. The distance matrix (D) indicates the
existence of three groups that are identified with high accuracy by a simple dendrogram
(E).
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S 9: Groups of trees with different constant branch angles on the x−y plane (π/4(A), π/2(B),
π(C)) can be effectively separated. The branch angles influence the radial distances of the
branches and as a result their respective persistence barcodes. For smaller branch angles the
branches of the trees extend to larger radial distances, resulting in longer bars. The distance
matrix (D) indicates the existence of three groups that are identified with high accuracy by a
simple dendrogram (E). A few mis-classifications are present in the dendrogram (denoted in
black). This fact indicates that this distance is not appropriate for 100% accurate separation
of branch angles since the branch angles are not directly accounted for in the TMD algorithm.
However, the secondary effects of the branch angles can distinguish the trees with very high
accuracy (97%).
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S 10: Groups of trees with different degrees of randomness (0.10(A), 0.50(B), 0.80(C)) can be
effectively separated. The degree of randomness influences the extent of individual branches
on the trees. For lower values of randomness the trees are less tortuous and extend to larger
radial distances. As a result, the trees with smaller degree of randomness generate longer
bars in their respective persistence barcodes. The distance matrix (D) indicates the existence
of three groups that are identified with high accuracy by a simple dendrogram (E).
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S 11: Groups of trees with different topological patterns that result in different degrees
of asymmetry (0.9(A), 0.3(B), 0.0(C)) can be effectively separated. The asymmetry of the
branching structure generates distinct patterns in the respective persistence barcodes. In-
terestingly, the more asymmetric trees (A) result in a more homogeneous distribution of
branches in space along the path of the main branch. As a result, the corresponding pes-
ristence images are more symmetric around the diagonal. The asymmetry of the trees is
reflected in the barcodes by an inverse relation, as the more symmetric trees are encoded in
more skewed barcodes. The distance matrix (D) indicates the existence of three groups that
are identified with high accuracy by a simple dendrogram (E).
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6. Supervised Classification

Supervised classification is a machine learning technique in which a sample
dataset (training set) is presented to the algorithm, which then predicts the
labels of the individuals that have not been presented (test set).
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S 12: Results of supervised classification on the dataset of Fig 4 based on the average
unweighted persistence images of neuronal morphologies from different species: (I) cat, (II)
dragonfly, (III) fruit fly, (IV) mouse and (V) rat. Traditional classification methods measure
the degree of separation between two classes, as opposed to the TMD which also reveals the
structural principles that differentiate distinct morphological groups. Below the diagonal we
illustrate the separation of each pair of groups by presenting the confusion matrices (color-
scale from 0 to 1) for the binary classification of the two groups in question. Above the
diagonal we present the structural differences between the two groups, as they are revealed
by subtracting their unweighted persistence images. Note that since we are studying the
structure and not the size differences, the data are not normalized according to the size of
the neurons. As a result, the structural differences are unscaled and the relative sizes are
presented in the average unweighted persistence images, on the left.

In this section we present the results of the supervised classification that
was performed on the trees of the five groups of neurons from different species
that are shown in Fig 4. A supervised classification algorithm (Decision Tree)
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is trained on the unweighted persistence images. The trained classifier is used
to predict the class of trees of the test set. The accuracy of the classifier is
defined by the number of the correct predictions divided by the total number
of predictions.

The results of the classification are presented with the overall accuracy
(percentage) and the confusion matrix. The confusion matrix represents the
performance of the classification: true positives are presented in the diago-
nal, where false positives are presented in non-diagonal elements. A perfect
classification would result in ones on the diagonal and zero values everywhere
else.
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S 13: Supervised classification of neuronal species A. Results of supervised classification,
trained on the unweighted persistence images of the five groups of neuronal trees presented
in Fig 4. The confusion matrix represents the performance of the classification: true positives
are presented in the diagonal, where false positives are presented in non-diagonal elements.
Intense red indicates high fraction of data and white shades indicate small fraction of data
that correspond to each element of the matrix. The fact that the diagonal is represented in
intense red indicates that in most of the cases the classifier accurately predicts the initial
group of the neuronal trees. B. For the same dataset (Fig 4) we quantify the accuracy of the
supervised classification as the number of correctly predicted labels. The classifier is trained
with a subset of the data, as shown in x-axis. As the number of samples that are used for
the training is increased the accuracy increases. Note that the accuracy reaches 70% when
one fourth of the data (25%, 20 individuals) is used for the training. As a result, a relatively
small subset of the data is needed in order to achieve very high accuracy.

6.1 Classification of neuronal trees

The average unweighted persistence images were used for the efficient separa-
tion of different morphological classes. The hierarchical clustering (Fig S 12)
as well as the supervised classification (Fig S 13A) illustrate the clear separa-
tion between the neurons of different species. In addition, by subtracting the
persistence images of two groups we can identify the nature of their structural
differences, as opposed to traditional methods. Note that the average per-
sistence images have been scaled according to the largest processes for each
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species in order to illustrate the scale invariant branching properties of each
neuronal type.

For example in Fig S 12, we illustrate the spatial differences of the branch-
ing patterns of neuronal trees from the different species of Fig 4. The dragonfly
neurons consist of much smaller processes that generate a high concentration
of branches around the diagonal, which are not present in other species. Mouse
neurons present a wide variety of branch lengths which result in a wider distri-
bution of points around the diagonal compared to all the other species. The rat
pyramidal neurons present a tuft at larger radial distances that differentiates
them from the other species.

The results of supervised classification, trained on the unweighted persis-
tence images of the five groups of neuronal trees of Fig 4 are shown in Fig
S 13A. The higher values in the diagonal of the confusion matrix (true pos-
itives) as opposed to small values at the rest of the cases (false positives)
indicates that the classifier predicts the actual group of the neuronal trees
with high accuracy.

The performance of the classifier as a function of the size of the training
set is presented in Fig S 13B for the same dataset (Fig 4). As the number of
samples that are used for the training increases the accuracy increases accord-
ingly. Note that the accuracy reaches 70% when one fourth of the data (25%,
20 individuals) is used for the training. As a result, a relatively small subset
of the data is needed in order to achieve very high accuracy. The classifier
based on the unweighted persistence images is capable to predict the class of
neuronal trees even when it is trained with very small datasets. This property
is very useful for the classification of neuronal trees, where usually only few
data of each class are available.

7. Diversity Index

The diversity index of a community is a quantitative measure that re-
flects how many different types are present in the dataset and how evenly
they are distributed. The diversity increases with the number of types. For a
given number of groups, the diversity index is maximized when all groups are
equally represented in the dataset. However, most diversity indices behave as
if different species had nothing in common.

An alternative method for the characterization of the diversity of a com-
munity has been proposed in [11]. The diversity profile, i.e., the graph of
the diversity index versus a sensitivity parameter q, describes the shape of
the community as the perceived diversity changes with respect to the rich-
ness (rare species are influencing the graph for small q) and the dominance
of the species (common species almost exclusively define the graph for large
q). Therefore, the parameter q represents the inverse of the sensitivity to rare
species. The density profile takes into account the actual similarity between
different groups, as opposed to classical measurements that use the naive sim-
ilarity, i.e., the identity matrix, assuming that different species are completely
independent. Based on this method, we generate the diversity profiles of the bi-
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ological datasets that have been studied in this paper: neurons of five different
species (Fig S 14 ) and layer five pyramidal cells (Fig S 14 ).
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S 14: A. Diversity indices for the species (A) and the L5 pyramidal cells (B).

For the neurons of different species (Fig S 14 ) the perceived diversity does
not change significantly, when we use the actual similarity matrix (solid line)
compared to the naive similarity matrix (dashed line). This is due to the fact
that neurons of different species are very distinct and therefore their similarity
matrix is very close to the identity matrix. It is however interesting to notice
that the values of diversity index are much higher in this example compared to
the ones of the layer 5 pyramidal cells (Fig S 14 ), indicating that this dataset
is indeed more diverse, as expected from visual examination of the neurons.

On the contrary, the diversity profile of layer 5 pyramidal cells (Fig S 14 )
is strongly influenced by the similarity matrix in the case of four classes, while
this effect is highly reduced in the case of three classes. This indicates that the
classification of the neurons in three classes is much more robust. In this case
the classes are more distinct and the similarity matrix is closer to the identity
matrix.
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