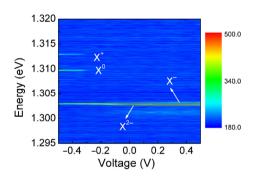
Electronic Supplementary Material

Observation of coupling between zero- and twodimensional semiconductor systems based on anomalous diamagnetic effects

Shuo Cao^{1,§}, Jing Tang^{1,§}, Yue Sun¹, Kai Peng¹, Yunan Gao¹, Yanhui Zhao¹, Chenjiang Qian¹, Sibai Sun¹, Hassan Ali¹, Yuting Shao¹, Shiyao Wu¹, Feilong Song¹, David A. Williams², Weidong Sheng³, Kuijuan Jin^{1,4} (\bowtie), and Xiulai Xu¹ (\bowtie)


¹ Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

² Hitachi Cambridge Laboratory, Cavendish Laboratory, Cambridge CB3 0HE, UK

⁴ Collaborative Innovation Center of Quantum Matter, Beijing 100084, China

[§] These authors contributed equally to this work.

Supporting information to DOI 10.1007/s12274-015-0910-z

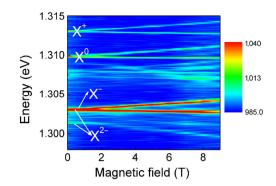


Figure S1 Contour plot of photoluminescence (PL) spectra of a single quantum dot as a function of bias voltage with a pumping power of 7.11 μ W. Singly positively charged exciton (X⁺), neutral exciton (X⁰), singly negatively charged exciton (X⁻), and doubly negatively charged exciton (X²⁻) are clearly observed, as marked. The energy separations between X⁺ (X⁻) and X⁰ are about 3–7 meV, which is due to Coulomb interaction in the quantum dot. However, the separation between X²⁻ and X⁻ is much smaller because the third electron of X²⁻ occupies the p-shell, resulting in a smaller Coulomb interaction [S1].

Address correspondence to Xiulai Xu, xlxu@iphy.ac.cn; Kuijuan Jin, kjjin@iphy.ac.cn

³ Department of Physics, Fudan University, Shanghai 200433, China

Figure S2 Zeeman splitting and diamagnetic shift of singly positively charged exciton (X^+) , neutral exciton (X^0) , singly negatively charged exciton (X^-) , and doubly negatively charged exciton (X^{2-}) . The spectra were collected with a pumping power of 5.93 μ W with a bias voltage at -0.5 V. The *g* factors are similar for all peaks in a range of 2 to 3. Peaks of X^+ , X^0 , X^- , and high energy brunch of X^{2-} show a positive diamagnetic shift with values around 6–7 μ eV/T². The singlet branch of X^{2-} at low energy side shows a negative diamagnetic shift as reported before [S2].

Figure S3 Enlarged contour plot of negatively charged excitons (X^- , X^{2^-} , X^{3^-}) as a function of an applied magnetic field with a pumping power at 7.11 μ W. Anticrossings between X^{3^-} and continuum states of wetting layer are observed, which are similar to what has been reported before [S2, S3].

References

- [S1] Tang, J.; Cao, S.; Gao, Y.; Sun, Y.; Geng, W. D.; Williams, D. A.; Jin, K. J.; Xu, X. L. Charge state control in single InAs/GaAs quantum dots by external electric and magnetic fields. *Appl. Phys. Lett.* 2014, 105, 041109.
- [S2] Karrai, K.; Warburton, R. J.; Schulhauser, C.; Högele, A.; Urbaszek, B.; McGhee, E. J.; Govorov, A. O.; Garcia, J. M.; Gerardot, B. D.; Petroff, P. M. Hybridization of electronic states in quantum dots through photon emission. *Nature* 2004, 427, 135–138.
- [S3] Van Hattem, B.; Corfdir, P.; Brereton, P.; Pearce, P.; Graham, A. M.; Stanley, M. J.; Hugues, M.; Hopkinson, M.; Phillips, R. T. From the artificial atom to the Kondo–Anderson model: Orientation-dependent magnetophotoluminescence of charged excitons in InAs quantum dots. *Phys. Rev. B* 2013, *87*, 205308.