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Figure S1 SEM images of (a) HC, (b) HCK-0.5, (c) HCK-1, and (d) HCK-2.
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Figure S2 The d002 and La of hard carbon from TEM and Raman results.

Figure S3 (a) XRD patterns and (b) Raman spectra of hard carbon materials.



Figure S4 XPS full spectra of several hard carbon samples.

Figure S5 XPS C1s high resolution spectra of (a) HCK-0.5 and (b) HCK-2.

Figure S6 The CV curves of (a) HC, (b) HCK-0.5, and (c) HCK-2 electrodes at 0.1 mV s−1.



Figure S7 The discharge and charge profiles of the HCK-1 electrode at different current densities.

Figure S8 The Na storage performance comparison of the HCK-1 with other hard carbons from recent literatures.

Figure S9 (a) The EIS plots and (b) RΩ, RSEI, and Rct of different cycled electrodes.



Figure S10 (a) Long-term cycling performance, (b) Galvanostatic discharge-charge profiles at 1 A g−1, and (c) TEM image after cycling of

HCK-1.

Figure S11 CV curves of HC at different rates.



Figure S12 Voltage responses of HC and HCK-1 during the charging/discharging process.

Figure S13 The equivalent circuit diagram for hard carbon electrodes: RΩ, Rsei, Rct, CPE, and W represent the internal resistance of cells,

the SEI layer resistance, the charge transfer resistance, the constant phase element, and the Warburg resistance, respectively.

Figure S14 (a) SEM image of PB. (b) Galvanostatic discharge/charge curve and (c) rate property of PB cathode.

Table S1 The distribution proportion of high-resolution C1s species

Sample C-C (sp2) C-C (sp3) C-O C=O

HC 31.5% 45.9% 13.9% 8.8%

HCK-0.5 31.8% 39.1% 21.8% 7.3%

HCK-1 43.8% 37.7% 12.8% 5.7%

HCK-2 48.9% 34.6% 10.9% 5.5%



Table S2 The ICE of HC, HCK-0.5, HCK-1, and HCK-2 at 0.1 A g−1

Sample HC HCK-0.5 HCK-1 HCK-2

Charge capacity

(mAh g−1)
245.4 235.1 286.3 272.6

Disharge capacity

(mAh g−1)
319.3 304.5 356.2 350.9

ICE (%) 76.9 77.2 80.4 77.7

Table S3 Comparison of electrochemical performance with different carbonaceous anodes materials reported

Ref. Precursors Treatment strategy
Na storage capacity (mAh g−1) at

0.02/0.05/0.1/0.2/0.5/1/2 A g−1

[1] Paper towels Catalytic defect-repairing 335/300/235/55/40/−/−

[2] Glucose Hydrothermal carbonization 347/320/285/198/105/−/−

[3] Sugarcane Microwave activation −/311.3/238.7/187/89.5/58.7/−

[4] Lignite coal Cross-linking reaction 312/308/296/255/188.2/106.1/−

[5] Polymer
Functional group

engineering
300/256/110/73/58/−/38

[6] Anthracite Chemical pre-activation 308/276/256/243/156/81/−

[7] Lignin Closed pore construction −/266/236/175/104/77

[8]
Tamarind fruit

shell

Interlayer spacing expansion
−/324/271/199/94/44/24

This work Platanus flosses Molten-salt catalysis 320/303/285/268/235/201/138

Table S4 The fitted results of RΩ, Rsei, and Rct of HCK-1 during the first two cycles

Voltage
First cycle (Ω) Second cycle (Ω)

RΩ Rsei Rct RΩ Rsei Rct

OCV 7.8 - 30.4 7.6 1.3 1.0

1.5 V 7.7 - 29.7 8.3 1.0 1.3

1.0 V 7.9 - 20.8 7.6 1.6 1.6

0.7 V 7.9 - 20.0 7.5 1.3 1.4

0.4 V 8.0 - 16.8 7.8 1.8 3.9



0.1 V 8.2 - 15.9 8.2 2.1 3.9

0.05 V 8.2 - 12.5 8.4 4.9 3.6

0.01 V 8.1 - 9.2 8.3 3.6 4.3

0.05 V 8.3 7.3 3.6 7.8 1.7 4.5

0.1 V 7.9 2.3 4.5 7.4 1.7 1.6

0.4 V 7.5 2.3 2.0 7.4 1.6 1.1

0.7 V 7.5 2.1 1.1 7.1 1.4 1.3

1.0 V 7.4 2.1 1.0 7.3 1.2 1.2

1.5 V 7.5 1.3 1.0 7.4 1.0 1.1
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