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This is a supplementary document to the corresponding paper submitted to the Water Resources Manage-
ment. section 1 contains the details of the univariate and partial Mann-Kendal test of stationarity. section 2 is
details of 120 different models of univariate GEV distribution for water level with precipitation as covariate.
section 3 contains copula function and Kendall’s τ for four copula families which are used in the main article.
section 4 is details of AIC and BIC for univariate and bivariate parameter estimation. section 5 contains more
details of univariate and bivariate return periods and return levels in both stattionary and time-varying cases.
section 6 contains the methods of estimating copula parameters. section 7 contains details of the structures of
dynamic copulas and section 8 is the details of a goodness-of-fit test for static and dynamic copula.

1 Mann-Kendall test

1.1 Univariate Mann–Kendall test

The test statistic is
S = ∑

i< j
sgn(x j− xi), (1)

where sgn(t) is the sign of t which is -1, 0, and 1 whenever t is negative, 0, or positive, respectively. Under H0,
i.e., when there is no trend in the data, S is distributed as a normal distribution with mean zero. If there is no
tie in the data, the variance of S is approximate:

Var(S) =
n(n−1)(2n+5)

18
. (2)

If there are no ties in the observations and no trend is present in the data, the test statistic is a normal distribution
with zero mean and variance Var(S) = n(n−1)(2n+5)/18.

1.2 Partial Mann-Kendall test

Let X be a target variable and Y be a covariate and let SX and SY be the univariate Mann-Kendall test statistic
(1), for X and Y , respectively. Then the bivariate distribution of the random vector S=(SX ,SY ) is approximately
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normal with mean vector 0, and variances define in (2) and estimated covariance:

σ̂xy =
1
3

{
∑
i< j

sgn(X j−Xi)sgn(Yj−Yi)+ ∑
i< j<k

sgn(Xk−Xi)sgn(Yk−Yj)

}
.

Hence, the conditional distribution of SX |SY = s can be approximated by:

SX |SY = s ∼ N

(
µ̂s =

σ̂xy

σ2 s, σ̂2
s = σ

2−
σ̂2

xy

σ2

)
.

where σ2 is the common variance of SX and SY defined in (2). The hypothesis H0 can be tested by standardizing
the conditional distribution of SX |Sy = s, and the p-value would be

2P
[
Z > σ̂

−1
SY
|SX − µ̂SY |

]
.

2 Format of 120 models for water level distribution with TMIN and TMAX as covariate

As mentioned in the main article, for each target variables there are 120 different models; These 120 models
for water level are shown in Table 1. Replacing WL with PREC gives the 120 models for precipitation.

Table 1 120 distinct models of GEV distribution for target variable WL with covariates T MIN and T MAX .

Model Location (µW L) Scale (σW L) Shape (ξW L)
M1

µ0

σ0

ξ0 (a)
M2 ξ0 +ξ1 ln t (b)
M3 ξ0 +ξ1 +ξ1T MIN (c)
M4 ξ0 +ξ1 ln t +ξ2T MIN (d)
M5 ξ0 +ξ1T MAX (e)
M6 ξ0 +ξ1 ln t +ξ2T MAX (f)

M7–M12 σ0 +σ1 ln t (a)-(f)
M13–M16 σ0 +σ1T MIN (a)-(d)
M17–M20 σ0 +σ1 ln t +σ2T MIN (a)-(d)
M21–M24 σ0 +σ1T MAX (a),(b),(e),(f)
M25–M28 σ0 +σ1 ln t +σ2T MAX (a),(b),(e),(f)
M29–M56 µ0 +µ1 ln t same as models M1–M28
M57–M72 µ0 +µ1T MIN all models M1–M28 except those which σ or ξ depends on T MAX (16 models)
M73–M88 µ0 +µ1 ln t +µ2T MIN same as models M57–M72
M89–M104 µ0 +µ1T MAX all models M1–M28 except those which σ or ξ depends on T MIN (16 models)
M105–M120 µ0 +µ1 ln t +µ2T MAX same as models M89–M104

3 Details of 4 copulas which are used in the main article

Four famous copulas are used in the main article: Clayton, Gumbel, Frank, and Normal copula. The copula
functions as well as the Kendall τ’s are given in Table 2.
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Table 2 Copula function, parameter space, and Kendall’s τ for families of bivariate copulas (D1 is the Debye function and Φ is the
distribution function of standard normal distribution

Family Copula function: C(u, v; θ) Range of θ Kendall’s τ λL λU

Clayton
(

u−θ + v−θ −1
)−1/θ

θ > 0
θ

2+θ
2−1/θ 0

Frank − 1
θ

ln

[
1+

(
e−θu−1

)(
e−θv−1

)(
e−θ −1

) ]
θ 6= 0 1+

4
θ
(D1(θ)−1) 0 0

Gumbel exp
{
−
[
(− lnu)θ +(− lnv)θ

]1/θ
}

θ ≥ 1 1− 1
θ

0 2−21/θ

Normal
∫

Φ−1(u)

−∞

∫
Φ−1(v)

−∞

1
2π
√

1−θ 2
exp
{
− x2−2θxy+ y2

2(1−θ 2)

}
dydx −1≤ θ ≤ 1

2
π

arcsinθ 0 0

4 More about AIC and BIC

More generally, in a parameter estimation model, the Akaike information criteria (AIC) and Bayesian infor-
mation criteria (BIC) are defined as below:

AIC = −2`(θ̂)+2p, (3)
BIC = −2`(θ̂)+ lnnp, (4)

where n is the number of observations, θ̂ is the vector of maximum likelihood estimates of the parameters,
`(θ) = ∑

n
i=1 ln ft (xt ;θ) is the likelihood function at point θ , and p indicates the number of the model param-

eters. Since the number of parameters are not equal in all models, the AIC may overestimate the fitness of the
model, hence using BIC is more appropriate in this case.
Usually, the models with lower AIC/BIC are better fitted since they have greater Likelihood value. AIC/BIC
can be used for univariate FA as well as copula FA; also, they can be used for both static and time-varying mod-
els. For computing AIC/BIC for copula, the density function ft in (3) and (4) should be replaced by c(ut , vt |θ)
(or c(ut ,vt |θt) for time-varying copula).

5 More about return levels and return periods for time-varying univariate distribution and copula

Return periods are defined as the inverse of the upper quantile of the estimated distributions. For simplicity,
L and P are used to show return level and return period, respectively. When working with static univariate
distributions, for each return level, L , there is a unique return period defined as:

P(L ) =
1

Pr[X ≥L ]
=

1
1−F(L )

=
1

F̄(L )
.

In time-varying univariate models, at each time epoch, t, a distinct distribution is estimated; therefore, given a
single return level, L , there is a return period function which for each time gives a distinct return period; more
precisely:

Pt(L ) =
1

Pr[Xt ≥L ]
=

1
1−Ft(L )

.

In case of stationary/time-varying univariate models, given F or Ft , there is a one-to-one relationship between
return period and return level, because F and Ft are strictly increasing continuous functions and consequently
invertible; the return level can be characterized uniquely for a given return period; more precisely:

L (P) = F−1(1−1/P) and Lt(P) = F−1
t (1−1/P).
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For multivariate models, two approaches can be used to obtain the upper quantiles. If the marginal distribution
functions, bivariate distribution function, and copula of pair (X , Y ), are denoted by F , G, H, and C, respectively,
then two types of upper quantiles could be defined as:

H̄(x, y)−Pr [X ≥ xn∩Y ≥ y] = 1−F(x)−G(y)+H(x, y) = 1−u− v+C(u, v) = C̄(u, v),

and

H̃(x, y) = Pr [X ≥ x∪Y ≥ y] = 1−H(x, y) = 1−C(u, v) = C̃(u, v),

where u = F(x) and v = G(y). C̄ is called the “survival function associated with C”. Based on these types of
upper quantiles, two types of return periods can be defined:

P∧(L1, L2) =
1

H̄(L1, L2)
=

1
C̄(F(L1), G(L2))

, (5)

and

P∨(L1, L2) =
1

H̃(L1, L2)
=

1
C̃(F(L1), G(L2))

. (6)

P∧ and P∨ are called “AND” and “OR” return periods, respectively. Regardless of the type of return periods,
determining the return period for a given return level is the same as for the univariate case: for every (bivariate)
return level (L1, L2) there is a single associated return period which can be derived by equations (5) and (6).
However, since the bivariate functions H̄ and H̃ are not one-to-one, for each return period P there is a set of
bivariate return levels associated with P:

L ∧(P) = {(x, y) : H̄(x, y) = 1−1/P}=
{
(x, y) : C̄(F(x), G(y)) = 1−1/P

}
,

and

L ∨(P) =
{
(x, y) : H̃(x, y) = 1−1/P

}
=
{
(x, y) : C̃(F(x), G(y)) = 1−1/P

}
.

The set of return levels associated with a single return period forms a contour of H̄ or H̃, which is usually a
smooth curve in plane ℜ2.
In fact, “AND” return period at level L = (L1,L2) is the expected time of both X and Y exceeding their
critical values: X > L1 and Y > L2. It means that bivariate “critical status” is occurred when both variables
are at their high level. In contrast, the “OR” return period is the expected time for the occurrence of critical
value of either X or Y : X > L1 or Y > L2. In this case, the “critical status” is happened whenever at least one
of the variables achieves their critical value. The focus of this paper is on the “AND” return period Salvadori
et al. (2007, 2016). Like the univariate case, when the copula is time-varying, for each time epoch, t, different
return levels and return periods can be found. More precisely, for a given time epoch, t, the “AND” return
period is defined as:

P∧
t (L1, L2) =

1
H̄t(L1, L2)

=
1

C̄t(F(L1), G(L2))
.

Time-varying “OR” return period and “AND” and “OR” time-varying return levels are defined in similar
way. Note that regardless of copula being time-varying or stable, the marginal distributions can be stable or
time-varying. Whenever copula or one of the marginal distributions is time-varying, the bivariate return level
(period) will be time-varying.
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6 Estimation of the copula model parameter

6.1 Maximum Likelihood Estimation (MLE)

When the observations come from a similar distribution, the log-likelihood function is expressed as follows:

`(θ) =
n

∑
t=1

ln f (xt ;θ),

where x1, . . . ,xn are observations; f is the common probability density of X1, . . . ,Xn; n is the number of ob-
servations, and θ indicates the (vector of) parameter(s). The maximum likelihood estimate (MLE) of θ is the
value of θ which maximizes `(θ). Note that for copula estimation, the observation xt is replaced by (ut ,vt)
and the density function f is replaced by c. When the observations are not identically distributed, i.e., when the
model is dynamic, based on the form of the dynamic model, the form of the likelihood function is changed.
For instance, if the shape of distribution remains unchanged and only the parameter is changed over time, e.g.,
when θt = α1 +α2t, then the vector of parameters would be α = (α1,α2) and the log-likelihood function can
be expressed as:

`(α) =
n

∑
t=1

ln f (xt ;α1 +α2t).

6.2 Pseudo Maximum Likelihood Estimation (PMLE)

For fitting a copula on a data containing n bivariate observations (ui,vi), the univariate marginals should be
standard uniform. In practice, the marginal distribution of underlying variables rarely become standard uni-
form, so, before fitting a copula, the data should be transformed into a bivariate “pseudo” observation with
the standard uniform marginal distribution. The two well-known methods for transformations are: (i) fitting
suitable marginal distributions on xi’s and yi’s, separately, and putting ût = F̂X (xt) and v̂t = ĜY (yt); (ii) putting
ût =

#{ j:x j≤xt}
n+1 and v̂t =

#{ j:y j≤yt}
n+1 . Note that when the marginal distributions are not static, the second method

may lead to wrong results (Shih and Louis, 1995). In this paper, a two-step pseudo maximum likelihood esti-
mation was adopted for parameter estimation. First, the marginal distribution is fitted by the MLE method, then
the pseudo-observations for copula are derived with estimated distribution functions, and, finally, the copula is
fitted on the pseudo-observations. For the first step, the log-likelihood function is as follows:

`X (θ
x) =

n

∑
t=1

ln f (xt ;θ
x) , `Y (θ

y) =
n

∑
t=1

lng(yt ;θ
y)

Estimated marginal distribution functions are F̂X (x; θ̂ x) and ĜY (y; θ̂ y). Hence, pseudo observations are ût =
F̂X (xt ; θ̂ x) and v̂t = ĜY (yt ; θ̂ y) and pseudo-log-likelihood function is as follows:

`C (θ
c) =

n

∑
t=1

lnc
(
ût , v̂t ;θ

C) , (7)

where c(u,v;θ) indicates the density of the copula function at (u,v) with parameter θ . The parameter of cop-
ula can be estimated by minimizing (7). In this paper, several packages of R software such as “base”, “stats4”,
“mle”, “extRemes” are used for maximizing the stable/time-varying univariate and copula log-likelihood func-
tions (Joe, 2014).
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7 Bivariate time-varying copulas

7.1 Dynamic Frank copula

Bivariate distribution of static Frank copula with parameter θ is: (Manner and Reznikova, 2012; Bender et al.,
2014; van den Goorbergh et al., 2003; Golian et al., 2020)

CFrank(u,v;θ) =− 1
θ

ln

[
1+

(
e−θu−1

)(
e−θv−1

)
(e−θ −1)

]
,

and its bivariate density function is as follows:

cFrank(u,v;θ) =
∂ 2CFrank

∂u∂v
=

θ
(
1− e−θ

)
e−θ(u+v)

(e−θ −1+(e−θu−1)(e−θv−1))2 ,

in which θ 6= 0. For time-varying Frank copula, the parameter θt is considered as an ARMA(1,m) time series.
The error term in this ARMA model is considered εt = |ut − vt |. More precisely,

θt = α +βθt−1 +
γ

10

m

∑
i=1
|ut−i− vt−i| , (8)

Note that in the case of the time-varying copula, the vector of parameters is θ = (α,β ,γ). Patton (2012) con-
sidered the model (8) for Kendall’s τt instead of the parameter itself. Since Kendall’s τ should be lie between
[0,1], Patton applied a transformation function on the model; more precisely, he considered the following
model for time-varying Kendall’s tau:

τt = Λ

(
α +βΛ

−1 (τt−1)+
γ

m

m

∑
i=1
|ut−i− vt−i|

)
,

where Λ(x) = Λτ(x) =
1−exp(−x)
1+exp(−x) is the transformation function. Note that since the range of parameters of

Frank copula has no limitation, there is no need to use a transformation function in (8).

7.2 Dynamic Gumbel copula

Bivariate distribution of static Gumbel copula with parameter θ is:

CGumbel(u,v;θ) = exp
[
−
{
(lnu)θ +(lnv)θ

} 1
θ

]
,

and its bivariate density function is as follows:

cGumbel(u,v;θ) =
∂ 2CGumbel

∂u∂v
=CGumbel(u,v;θ)× (uv)−1

{
(− lnu)θ +(− lnv)θ

}−2+ 2
θ

(lnul̇nv)θ−1

×
{

1+(θ −1)
(
(− lnu)θ (− lnv)θ

)− 1
θ

}
where θ ∈ (1,∞).
Similar to the case of time-varying Frank copula, the parameter of time-varying Gumbel copula is considered
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as a ARMA(1,m) time series. Again, the error term is εt = |ut − vt |. Similar to Patton’s model, a transformation
is applied to the model which holds the parameter θt in its acceptable range. More precisely,

θt = Λ

(
α +βΛ

−1 (θt−1)+
γ

m

m

∑
i=1
|ut−i− vt−i|

)
, (9)

where

Λ(x) = ΛGumbel(x) =

{
1+ exp(x), x < 0,
2+ ln(x+1), x≥ 0.

This transformation function is smooth in the sense that it is continuous and differentiable. It varies smoother
than Patton’s transformation function, and, in practice, it covers a wide range of parameter values. Note that in
the case of the time-varying copula, the vector of parameters is θ = (α,β ,γ).

7.3 Dynamic Clayton copula

Bivariate distribution and density function of Clayton copula are as follows:

CClayton(u,v;θ) =
(

u−θ + v−θ −1
) 1

θ

,

and

cClayton(u,v;θ) =
∂ 2CClayton

∂u∂v
= (1+θ)(uv)−1−θ

(
u−θ + v−θ −1

)− 1
θ
−2

,

where θ > 0. Parameter of time-varying Clayton copula is similar to the Gumbel time-varying copula in (9)
with transformation function:

Λ(x) = ΛClayton(x) =

{
exp(x), x < 0,
1+ ln(x+1), x≥ 0.

7.4 Dynamic Gaussian (normal) copula

Bivariate distribution and density function of Gaussian copula are defined in the terms of density and distri-
bution function of univariate standard normal distributions. The univariate density function of the standard
normal distribution is as follows: (Almeida and Czado, 2012)

φ(z) =
1√
2π

exp
(
−1

2
z2
)
.

The distribution function of the standard normal distribution cannot be evaluated analytically, and should be
derived numerically as the following definite integrals:

Φ(z) =
∫ z

−∞

φ(w)dw.
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Now, the bivariate distribution function of Gaussian copula can be expressed as the following multiple definite
integral:

CNormal(u,v) =
∫

Φ−1(u)

−∞

∫
Φ−1(v)

−∞

1√
2π (1−θ 2)

exp
(
− 1

2(1−θ 2)

(
x2 + y2−2θxy

))
dydx,

and the bivariate density function of Gaussian copula is:

cNormal(u,v;θ) =
∂ 2CNormal

∂u∂v
=

1√
2π (1−θ 2)φ (Φ−1(u))φ (Φ−1(v))

× exp
[
− 1

2(1−θ 2)

{(
Φ
−1(u)

)2
+
(
Φ
−1(v)

)2−2θΦ
−1(u)Φ−1(v)

}]
.

where θ ∈ (−1,1) and Φ−1 is the quantile function of standard normal distribution. The parameter of time-
varying Gaussian copula is modeled as a ARMA(1,m) time series with error term εt =

∣∣Φ−1(ut)−Φ−1(vt)
∣∣

and similar to the case of Gumbel and Clayton, a transformation function is applied:

θt = Λ

(
α +βΛ

−1 (θt−1)+
γ

m

m

∑
i=1

∣∣Φ−1(ut)−Φ
−1(vt)

∣∣) , (10)

where the transformation function is:

Λ(x) = ΛNormal(x) =
1− exp(−x)
1+ exp(−x)

= tanh
( x

2

)
.

8 Goodness-of-fit test for static and time-varying copula

AIC/BIC can be used only for comparing several models and they do not provide information about fit-
ting a distribution on a single dataset; i.e., they cannot suggest accepting or rejecting the null hypothesis
H0 : F = F0. To do this, for univariate goodness-of-fit test there are three famous test statistics: Kolmogorov-
Smirnov, Anderson-Darling, Cramer-Von-Mises; these test statics are as follows (Hofert et al., 2018; Manner
and Reznikova, 2012; Deheuvels, 1980; Genest et al., 2009):

TKS = sup
x
|. . .Fn(x)−F0(x)| ,

TAD = n
∫

∞

−∞

(Fn(x)−F0(x))
F0(x)(1−F0(x))

dF0(x),

TCM = n
∫

∞

−∞

(Fn(x)−F0(x))
2 dF0(x),

where Fn is the empirical distribution of x1, . . . ,xn; i.e., Fn(x) = 1
n ∑

n
t=1 I{xt≤x}. All three test statistics tend to

be small if H0 is true. The critical values are computed numerically.
For copula goodness-of-fit test, suppose the copula of random vector (U,V ) be C(u,v). Then the conditional
distribution function of U |V = v is C(u|v) = ∂C(u,v)

∂v . Hence, the random variable W = C(U |V ) is distributed
as standard uniform distribution. This can be used to obtain a method for testing H0 : C = C0: compute
wt =C0(ut |vt) and by a well-known univariate method mentioned above, test whether H ′0 : W ∼U(0,1). When
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the copula is time-varying with time-varying parameter θt since wt = C0(ut |vt ;θt), t = 1,2, . . . ,n are not in-
dependent and identically distributed, hence, the critical values of well-known univariate goodness-of-fit test
cannot be applied. Manner and Reznikova (2012) proposed a parametric bootstrap method for approximating
p-values.
Their algorithm for computing approximate p-value is as follows; let θt be the ML estimator of θt .

1. Compute TKS, TAD, and TCM for the main sample (ut ,vt), t = 1,2, . . . ,n.
2. Simulate synthetic observation (ub

t ,v
b
t ) from copula C with parameter θ̂t , t = 1,2, . . . ,n.

3. Estimate the time-varying θ̂ b
t using the bootstrap sample, (ub

t ,v
b
t ).

4. Compute wb
t =C0

(
ub

t |vb
t ; θ̂t

)
.

5. Compute the KS, AD, and CM test statistic T b
KS, T b

AD, and T b
CM .

6. Repeat Steps 1 to 4 many times and compute the bootstrap p-values as the fraction of times TKS < T b
KS,

TAD < T b
AD, and TCM < T b

CM (Fermanian, 2005).
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