Erroneous Pixel Prediction for Semantic Image Segmentation: Supplemental Material

Lixue Gong¹, Yiqun Zhang¹, Yunke Zhang¹, Yin Yang² and Weiwei Xu¹(\boxtimes)

© The Author(s) 2015. This article is published with open access at Springerlink.com

1 Introduction

This supplemental material introduces the network architecture of each branch in our model in detail. And more visual results on ADE20K [7] and Cityscapes [4] of each branch are provided.

2 Network Architecture

The architecture of the *error-prediction branch* and the *detail branch* are shown in Tab. 1 and Tab. 2 respectively. The Global Attention Upsampling module (GAU) [5] and the Xception block [3] are used as building blocks in both branches.

3 More Visual Results

ADE20K validation set: In Fig. 1, we show more segmentation results of our model training on ADE20K training set with DeepLabv3+ as the *semantic branch*. **Cityscapes testing set:** We illustrate additional visual results on Cityscapes testing dataset in Fig. 4. This model training on Cityscapes *trainval_fine* dataset takes Xception71-DPC [1] as the *semantic branch*.

Error-prediction: The estimated error probability maps \mathbf{E}_{ep} are illustrated in Fig. 2. Our method can detect most of ground truth erroneous pixels.

Layer Cascade, Hard-mining and Bagging: We have compared the quantitative results among Layer Cascade [6], Hard-mining and Bagging in the original paper. The visual results are show in Fig. 3. All these three strategies can improve the segmentation

- the State Key Laboratory of CAD & CG at Zhejiang University, 310058, China. E-mail: L. Gong, gonglx@zju.edu.cn; W. Xu, xww@cad.zju.edu.cn(⋈).
- 2 School of Computing Clemson University, South Carolina, 29634, U.S..

Manuscript received: 2014-12-31; accepted: 2015-01-30.

results while the improvement of our method is the most significant.

Fig. 1 Visual improvements on ADE20K validation set.

References

- L.-C. Chen, M. Collins, Y. Zhu, G. Papandreou, B. Zoph, F. Schroff, H. Adam, and J. Shlens. Searching for efficient multi-scale architectures for dense image prediction. In *NIPS*, pages 8713–8724, 2018.
- [2] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam. Encoder-decoder with atrous separable convolution for semantic image segmentation. In *ECCV*, pages 801–818, 2018.
- [3] F. Chollet. Xception: Deep learning with depthwise separable convolutions. In CVPR, pages 1251–1258, 2017.
- [4] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele. The cityscapes dataset for semantic urban scene understanding. In *CVPR*, pages 3213–3223, 2016.
- [5] H. Li, P. Xiong, J. An, and L. Wang. Pyramid attention

Block name	Layer type	Stride	Ch I/O	Input	
sbp_feature	3x3conv+GN+ReLU	2	$class_num/32$	initial prediction \mathbf{P}_{sb}	
rgb_feature	3x3conv+GN+ReLU	2	3/32	RGB Image	
ep_input	concat	-	32+32/64	sbp_feature	
				rgb_feature	
conv1	3x3conv+GN+ReLU	1	64/64	ep_input	
conv2	3x3conv+GN+ReLU	1	64/64	conv1	
max_pool	2x2max_pool	2	64/64	conv2	
gau1	GAU Block [5]	1	64,1280/128	max_pool	
				$aspp_concat_out$	
unit1	Xception Block [3]	1	128/128		
			128/128	GAU1	
			128/128		
unit2	Xception Block+ReLU	1	128/256	unit1	
			256/256		
			256/256		
error_probs	3x3Conv+sigmoid	1	256/1	unit2	

 ${\bf Tab. 1} \quad {\rm Architecture \ of \ Error-prediction \ Branch}$

Tab. 2 Architecture of Detail Branch

Block name	Layer type	Stride	Ch I/O	Input
gau3	GAU Block	1	798 1980/519	$X ception_entryflow_block5_unit1$
			726, 1260/512	$aspp_concat_out$
gau3_conv0	3x3seperable_conv2d	1	512/512	gau3
gau3_conv1	3x3seperable_conv2d	1	512/512	gau3_conv0
gau3_relu	Add+ReLU	-	512, 512/512	gau3_conv1
				gau3
gau2	GAU Block	1	256, 512/256	$X ception_entryflow_block3_unit1$
				gau3_relu
gau2_conv0	3x3seperable_conv2d	1	256/256	gau2
gau2_conv1	3x3seperable_conv2d	1	256/256	gau2_conv0
gau2_relu	Add+ReLU	-	256, 256/256	gau2_conv1
				${ m gau}2$
gau1	GAU Block	1	128, 256/128	$X ception_entryflow_block1_unit1$
				gau2_relu
$gau1_conv0$	3x3seperable_conv2d	1	128/128	gau1
$gau1_conv1$	3x3seperable_conv2d	1	128/128	gau1_conv0
gau1_relu	Add+ReLU	-	100 100/100	gau1_conv1
			120, 120/120	$\operatorname{gau1}$
db_logits	3x3conv2d	1	19/19	gau1_relu

Fig. 2 (a) Input images. (b) The ground-truth semantic label map provided by Cityscapes dataset. (c) The semantic segmentation result output by the semantic branch, DeepLabv3+ in this case. (d) The ground-truth error map. (e) The error probability map generated by our error-prediction branch. the error probability of value 1 is colored in red, and 0 in black. White pixels indicate the unlabeled pixels in the dataset.

network for semantic segmentation. *arXiv preprint* arXiv:1805.10180, 2018.

[6] X. Li, Z. Liu, P. Luo, C. Change Loy, and X. Tang. Not all pixels are equal: Difficulty-aware semantic segmentation via deep layer cascade. In *CVPR*, pages 3193-3202, 2017.

[7] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba. Scene parsing through ade20k dataset. In *CVPR*, pages 633–641, 2017.

Fig. 3 Visual comparison. (1.a)-(1.e): Comparison with 'LC [6]-GAU-Decoder'; (2.a)-(2.e): Comparison with 'DeepLabv3+ [2]+Hard-mine'; (3.a)-(3.e): Comparison with 'DeepLabv3+ [2]+Bagging'.

TSINGHUA Deringer

Fig. 4 Visual results on Cityscapes testing set. Comparing the details in segmentation result, our method has better performance than Xception71-DPC [1] which we take as the *semantic branch*. The dashed rectangles highlight the regions where our method can effectively correct the errors in the front end model results.

