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1 More implementation details
This supplementary note documents more implementation
details of our algorithm temporal vectorized visibility, the
BVH generation time. These information might be helpful for
readers to better understand our algorithm.

We apply our algorithm to a direct illumination rendering
application with an animated 3D model. Fig. 1 shows the
flowchart of our application. Our application consists of
two major components. The first component is written in
CUDA for the temporal vectorized visibility generation, and
the second component uses Vulkan and RTX to invoke the
hardware accelerated ray tracing for rendering the direct
illumination.

In the first component, we use our front back edge oriented
infinite triangle BVH traversal algorithm to generate temporal
vectorized visibility. For each frame, after the model anima-
tion, we build a BVH over the updated model. We construct
bottom up BVH using the parallel locally-ordered clustering
BVH generation algorithm [1] and the BVH library [2]. The
BVH is generated in CPU, and then we upload the BVH and
the model data to CUDA for the infinite triangle and the
chosen ray BVH traversal.

Similar to [3], we sample temporal vectorized visibility
per vertex. Given the input model data, we gather all front
back edges and orphan edges of each vertex using Eq. (7) in
the manuscript and generate infinite triangles. Alg. 1 shows
the definition of our infinite triangle. The generated infinite
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triangles then traverse the BVH in parallel by using the
algorithm described in Section 3 in the manuscript.

Algorithm 1 The definition of our infinite triangle
and intersection output.

class Edge
1: int ui; // Starting point index
2: int vi; // End point index
3: int ti; // Owner triangle index
4: int pair; // Edge pair index

class Infinite triangle
5: vec3 origin;
6: int ei; // the index of the specified front
back edge

class IntersectOutput
7: float pr; // Relative distance of P.e

8: float er; // Relative distance of ei

9: int ei; // Intersecting front back edge index
10: int δ; // Delta occlusion count

During the infinite triangle BVH traversal, we perform
the triangle-AABB intersection at the branch nodes. At the
leaf nodes, we first identify the front back edges of the scene
triangles belonging to the lead nodes. Then, we perform the
infinite triangle vs. front back edge intersection. The relative
distance, the delta occlusion counts, and the indices of the
intersected front back edges are recorded as the intersection
output (see Alg. 2).

When an infinite triangle BVH traversal finishes, we have
all intersections and the corresponding sectors. Then, we
perform a ray tracing in a sector to get an exact occlusion
count. We randomly choose a sector and randomly choose a
ray in it. The chosen ray has a ray origin at the vertex and a
ray direction within the chosen sector. The occlusion count
of the chosen ray begins with 0.
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Fig. 1 The flowchart of our application.

We implement the chosen ray BVH traversal in CUDA.
During the traversal, we perform the ray-AABB intersection
at the branch nodes. At the leaf nodes, we perform a ray-
triangle intersection test and increment the occlusion count
for a positive result. With the exact occlusion count and the
delta occlusion counts, we deduce the occlusion counts of all
sectors and report line segments from each visible sector.

For both memory access efficiency and easier manipulation,
the reported line segments are tight packed and grouped per
vertex using Thrust Library [4], a built-in template library
from CUDA Toolkit. The prefix sums of the number of
the reported line segments per vertex are also prepared for
fetching data from the tight packed results. The tight packed
result is the temporal vectorized visibility of all vertices.

Note that some precautions must be implemented in the
above processes. First, we will ignore the front back edges
that are close to being parallel to the infinite triangle during
the infinite triangle vs. front back edge intersection. Ignoring
such edges might cause gaps in temporal vectorized visibility
and introduce errors to the rendering results. However, as we
just sparsely sample the 3D model surface for temporal vec-
torized visibility, the chance of encountering this numerically
important situation is small and can be ignored.

Second, we will ignore the owner triangles of the specified
front back edge during the chosen ray-triangle intersection.
The chosen ray touches the specified front back edge of the
infinite triangle. During the chosen ray BVH traversal, the
chosen ray will more than likely encounter the two owner
triangles. In this case, the chosen ray may view these triangles
as occluders and increase the occlusion count by one or two

randomly. Fortunately, each chosen ray will only have two
of such triangles, and we can conditionally ignore them by
using the triangle indices.

Our temporal vectorized visibility generation does not
require any geometric animation in advance, and the visibility
is generated in real time, instead of using pre-computation.
As the temporal vectorized visibility can be shared across
time, we generate new temporal visibility on demand, e.g. a
generation every 8 frames. If a generation does take place, all
generated temporal vectorized visibility, i.e. the tight packed
line segments, is promptly uploaded to RTX for the radiance
evaluation, i.e. the second components.

In the second component, we utilize hardware accelerate
ray tracing written in Vulkan to render the direct illumination.
The BVH of the animated 3D model is prepared again per
frame, and this time we are using the display card driver to
generate it. The rays have the ray origin at the camera position
and the ray direction from the camera through pixels, i.e. one
ray per pixel. We prepare rays in the Vulkan raygen shader
and apply the rays to traverse the BVH.

When a ray reaches the closest hit shader, i.e. the ray has
a closest hit position on the scene triangle, we evaluate the
direct illumination of the hit position using the temporal
vectorized visibility radiance evaluation. The conversion of
our endpoint representation to position vectors happens right
before the radiance evaluation, and this facilitates the temporal
vectorized visibility sharing across time. The illumination
contribution is stored in the ray payload and added to the total
contribution when the ray returns to the raygen shader.

Note that in the closest hit shader, we randomly choose a
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Algorithm 2 Infinite triangle vs. front back edge
intersection.
Local : buf - a buffer for storing intersection outputs
Global: vbuf - the vertex buffer
Global: ebuf - the edge buffer

foreach edge index ei ∈ leaf_node do
Edge e← ebuf [ei]
// Eq. (7) in the manuscript

if isFrontbackedge(P.origin, e) then
IntersectOutput output;
if isEdgeIntersect(P , pe, e, ei, output) then

buf← output
end foreach
function isEdgeIntersect(P , pe, e, ei, output)

vec3 pu ← vbuf [pe.ui];
vec3 pv ← vbuf [pe.vi];
vec3 eu ← vbuf [e.ui];
vec3 ev ← vbuf [e.vi];
vec3 pn = (pv − P.origin)× (pu − P.origin);
vec3 en = (ev − P.origin)× (eu − P.origin);
// triangle-line segment intersection

if isTriLineIntersect(P, e) then
// Eq. (10) in the manuscript

output.pr = RD(P.origin, en, pu, pv);
output.er = RD(P.origin, pn, eu, ev);
output.ei = ei;
output.δ = getDelta(P, e, output.er, pn);
return true;

else
return false;

end if
function getDelta(P, e, er, pn)
// change relative distance to point

// Eq. (11) in the manuscript

vec3 pt = evalRD(e, er);
// the other intersection point

between P and e.ti

vec3 p′t = tri_tri_intersect(P, e.ti);
// Eq. (9) in the manuscript

int δ = (p′t − pt) · (pt−P.origin)× pn > 0 ? 1: -1;
if isNonOrphanEdge(e) then

δ = δ*2
return δ

vertex of the hit triangle using the barycentric coordinate,
and the temporal vectorized visibility of the chosen vertex is
used for the radiance evaluation. This is significantly faster
than [3], which needs to evaluate all three vertices for linear
interpolation. The downside is it will give us a tiny bit of
noise. As the final touch, we apply the AI denoiser to the

rendering images.
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