
1

Implementation of the Swap Test

The Swap Test Explained

The swap test is a quantum algorithm that requires three qubits to assess the
extent to which two single qubit quantum states |φ〉 and |ψ〉 differ. Without
loss of generality, we can write |φ〉 and |ψ〉 using our notation for disease and
test class states

|φ〉=
∑

tj∈{0,1}

ctj |tj〉t (1)

= c0 |0〉t + c1 |1〉t , (2)

and

|ψ〉=
∑

dj∈{0,1}

cidj
|dj〉d (3)

= ci0 |0〉d + ci1 |1〉d , (4)

where we will demonstrate the relevant swap operation between the matched
test qubit state |tj〉t and train state |dj〉d. The relevant full starting state for
the swap operation and test is

|0, φ, ψ〉 = |0〉s
∑

tj∈{0,1}

∑
dj∈{0,1}

ctjc
i
dj
|tj〉t |dj〉d . (5)

Application of the Hadamard gate to the swapper qubit |0〉s yields

Hs |0, φ, ψ〉 =
∑

tj∈{0,1}

∑
dj∈{0,1}

ctjc
i
dj

1√
2

(
|0〉s |tj〉t |dj〉d + |1〉s |tj〉t |dj〉d

)
. (6)

Operation of the CSWAP or Fredkin gate leaves |φ〉 and |ψ〉 (and correspond-
ingly |tj〉t and |dj〉d) unchanged when the swapper qubit is in the ground
state, |0〉s, while swapping the |φ〉 and |ψ〉 (and correspondingly |tj〉t and
|dj〉d) states when the swapper qubit is in the excited state, |1〉s, giving

CSWAPHs |0, φ, ψ〉 =
∑

tj∈{0,1}

∑
dj∈{0,1}

ctjc
i
dj

1√
2

(
|0〉s |tj〉t |dj〉d + (7)

|1〉s |dj〉d |tj〉t
)
. (8)

Applying another Hadamard gates to the swapper qubit results in the final
state before measurement

2

HsCSWAPHs |0, φ, ψ〉 =
∑

tj∈{0,1}

∑
dj∈{0,1}

ctjc
i
dj

1

2

(
|0〉s |tj〉t |dj〉d + (9)

|1〉s |tj〉t |dj〉d + (10)

|0〉s |dj〉d |tj〉t− (11)

|1〉s |dj〉d |tj〉t
)
. (12)

Collecting terms in |0〉s and |1〉s and use of Eqs. (1),(3) results in the well-
known pre-measured state of the swap test

HsCSWAPHs |0, φ, ψ〉 =
1

2
|0〉s

(
|φ, ψ〉+ |ψ, φ〉

)
+

1

2
|1〉s

(
|φ, ψ〉 − |ψ, φ〉

)
.

(13)
The probability of measuring the the swapper qubit in state |0〉s is

P (|s = 0〉s) =
1

2
+

1

2
| 〈ψ|φ〉 |2, (14)

which is the well-known result of the swap test assessing the extent of overlap
of states |ψ〉 and |φ〉 while the probability of measuring the swapper qubit in
state |1〉s is

P (|s = 1〉s) =
1

2
− 1

2
| 〈ψ|φ〉 |2 (15)

which is the measurement that we use to quantify the inner product between
test and train states and ultimately make the classification of the training
state into either the normal or disease class.

Understanding the Fredkin Gate Decomposition

As detailed in the manuscript, we implement the controlled-swap or Fredkin
gate using 18 elementary IBM Q gates (please refer to Online Resource 4 for
the circuit elements). The Fredkin gate consists 1 qubit serving as control and
2 other qubits that are the target of the swap operation. The controlled swap
operation has the following functionality: if the control qubit is in state |1〉,
swap the states held by the 2 target qubits; else, do nothing.

It was shown by (Smolin and DiVincenzo, 1996) that the Fredkin gate can be
implemented by placing 2 CNOT gates around the well-known Toffoli (CC-
NOT) gate, as shown in Online Resource 4. We use the decomposition of the
Toffoli gate that was presented in the Supplement of (Schuld et al., 2017) using
10 single-qubit gates and 6 CNOT gates. In the figure, q0 is the control qubit
and q1 and q2 are the target qubits of the swap operation. For the Toffoli gate,
q0 and q1 act as controls and q3 acts as the target of the CCNOT operation.

3

Of course, the Fredkin gate treats qubits q2 and q3 identically in terms of
functionality. We show here for a generic state how the Fredkin gate operation
is executed by the gate sequence CNOT · CCNOT · CNOT . In terms of the
qubits shown in Online Resource 4, we execute the controlled swap operation
on the generic 2-qubit state |ψ〉q1q2 = (a1 |0〉+ b1 |1〉)q1(a2 |0〉+ b2 |1〉)q2 twice,
first with q0 being in state |0〉q0 and then in state |1〉q0 . We show that the first
execution does not alter |ψ〉q1q2 whereas the second one swaps the individual

states held by q1 and q2. Denoting by Cij
X the CNOT gate with qubit qi as

control and qubit qj as target, and by CCijk
X the CCNOT gate with qubits

qi and qj in control and qubit qk acting as target, the CSWAP operation reads:

CSWAP |ψ〉q1q2 = C12
X CC321

X C12
X |ψ〉q1q2 (16)

In case 1 where q0 is in state |0〉q0 , CC321
X effectively reduces to the identity

operator I. Thus, Eq. (16) becomes

CSWAP |ψ〉q1q2= C12
X C12

X |ψ〉q1q2
= |ψ〉q1q2

and nothing is swapped as claimed. In case 2, q0 is in the state |1〉q0 and CC321
X

reduces to C21
X yielding

CSWAP |ψ〉q1q2= C12
X C21

X C12
X |ψ〉q1q2

= C12
X C21

X C12
X (a1 |0〉+ b1 |1〉)q1(a2 |0〉+ b2 |1〉)q2

= C12
X C21

X C12
X (a1a2 |0〉q1 |0〉q2 + a1b2 |0〉q1 |1〉q2

+b1a2 |1〉q1 |0〉q2 + b1b2 |1〉q1 |1〉q2)

= C12
X C21

X (a1a2 |0〉q1 |0〉q2 + a1b2 |0〉q1 |1〉q2
+b1a2 |1〉q1 |1〉q2 + b1b2 |1〉q1 |0〉q2)

= C12
X (a1a2 |0〉q1 |0〉q2 + a1b2 |1〉q1 |1〉q2

+b1a2 |0〉q1 |1〉q2 + b1b2 |1〉q1 |0〉q2)

= (a1a2 |0〉q1 |0〉q2 + a1b2 |1〉q1 |0〉q2
+b1a2 |0〉q1 |1〉q2 + b1b2 |1〉q1 |1〉q2)

= a2 |0〉q1 (a1 |0〉q2 + b1 |1〉q2) + b2 |1〉q1 (a1 |0〉q2 + b1 |1〉q2)

= (a2 |0〉q1 + b2 |1〉q1)(a1 |0〉q2 + b1 |1〉q2)

= (a2 |0〉+ b2 |1〉)q1(a1 |0〉+ b1 |1〉)q2
Thus, in case 2, the generic states held by qubits q1 and q2 are swapped by
the Fredkin gate. Q.E.D.

4

Useful Techniques and Observations

This section contains generally useful observations or techniques that the au-
thors stumbled upon, but were not directly applied to our inner product cir-
cuits.

Quantum Compression Technique

One can encode an arbitrary large number m using merely 2 qubits as fol-
lows. Prepare a state |ψ〉 = a |0〉 + b |1〉 such that a/b = k, and another state
|φ〉 = c |0〉 + d |1〉 such that c/d = l, where l ≤ 1 and m = l2k. Thus m is
a fraction, given by l, of the largest value that a binary string of k bits can
hold in the usual base-2 representation. Of course, k could in principle be di-
rectly used to store the desired large value, but k and l are both used here for
better precision. The success of quantum compression necessarily depends on
the precision achievable in state preparation (i.e. in rotation angles). Classi-
cally, there is no way around storing the precise number itself in some form
whereas here we can effectively compress it into one precisely prepared qubit.
The measurement would constitute the decoding/decompression.

Calculating Hamming Distance with XOR-based Schemes

We used the feature basis to encode our example data, but will point out here
that the most seemingly natural way to calculate the Hamming distance in a
quantum computer is to use bit-wise CNOT (or XOR) gates applied between
bit strings that are encoded directly as a series of |0〉 and |1〉 states in the
computational basis. For example, the Hamming distance between “001” and
“111” is given by the bit string “110,” which is of course output of |001〉⊕|111〉.
Measuring the coefficients of all 3-qubit basis states after this CNOT opera-
tion would reveal |110〉 as the final result. However, this way to calculate the
Hamming distance is highly inefficient in general, as each bit occupies a qubit
and each training vector has to be separately encoded.

Inner-product Decision Plane for Multiple Classes

For multiple training classes, the decision boundary for the inner product clas-
sifiers is not a simple plane or hyperplane as it is for two classes. In order to
construct the decision space, one would draw a bisector plane for each class,
dividing the feature space into preferred subregions by class, and pick the class
that is the universally preferred class in the region where the test vector lies.
For example, on a plane, one could have 3 class vectors for classes 1, 2 and 3
respectively, yielding a total of 3 bisecting planes or lines. These lines divide
the feature space into “R − 1 > R − 2”, “R − 2 > R − 3” etc. subregions for

5

a total of six such overlapping subregions (see Fig. 2). Here, R − 1 > R − 2
means that class 1 is preferred over class 2 for that subregion. Each point in
the feature space will be part of exactly two overlapping subregions where a
particular class (1,2 or 3) is preferred over the other two. So the point where
test vector lies determines its classification without any ambiguity in this man-
ner. Please refer to Online Resource 5 for the figure.

References

Schuld, M., Fingerhuth, M., and Petruccione, F. (2017). Implementing a
distance-based classifier with a quantum interference circuit. EPL (Eu-
rophysics Letters), 119(6):60002.

Smolin, J. A. and DiVincenzo, D. P. (1996). Five two-bit quantum gates are
sufficient to implement the quantum fredkin gate. Phys. Rev. A, 53:2855–
2856.

