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1 Introduction

Note that all equations and figures referenced in this

document refer to those in the main mauscript.

2 Superextensivity of the K-spin Hamiltonian

Consider the kth order of Eq. 10 when the policy vari-

ables are aligned πon = (1, . . . , 1) (Note that when

π = (0, . . . , 0) the energy at all orders except 0th van-

ishes):

Hk[πon] = −
∑

µ1...µk

Jµ1...µk

= −γk
∑
s0,a0

. . .
∑
sk+1

P a0
s0s1 . . . P

ak
sksk+1

Raksksk+1
.

If we assume for simplicity that all reward functions,

though potentially different from one another, are of

order Rass′ ≈ 1 and carry out the resulting sums in the
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order sk+1, ak, sk, ak−1, . . . , s0 while using the condi-

tional probability distribution normalization condition,

we find

Hk[πon] ≈ −γk
∑
s0

∑
a0,s1

P a0
s0s1 . . .

∑
ak−1,sk

P ak−1
sk−1sk

∑
ak,sk+1

P aksksk+1

≈ −γk
∑
s0

∑
a0,s1

P a0
s0s1 . . .

∑
ak−1,sk

P ak−1
sk−1sk

|A|

≈ . . .
≈ −(γ|A|)k|S ×A|,

where |A| is the magnitude of the action space and

|S × A| is the magnitude of the state-action space.

Therefore, under these assumptions H[π] displays su-

perextensivity, the severity of which is given by

Hk+1[πon]

Hk[πon]
≈ γ|A|.

It is infeasible for this to be rectified by setting

γ ≤ 1/|A| because in realistic MDPs one requires

γ ≈ 0.9 or above to find longer-term rewards while

A ≥ 2 is typically taken to be an integer. However,

in contrast to the requirements of statistical mechanics

applications where one might want to include an ad-

ditional factor of 1/|A| (or potentially 1/|S × A|), this

superextensivity of the K-spin Hamiltonian is ideal for

the determination of optimal policies since it is precisely

what allows determination of optimal policies based on

long-term rewards. In addition, including an additional

1/|A| correction factor at each subsequent order in the

Hamiltonian appears to be inconsistent with the defi-

nition of the Hamiltonian in terms of the Q functional

derived in Eq. 6.

As a result of its superextensivity, the truncation

of Eq. 10 is potentially not well controlled in many in-

stances. Developing heuristics for understanding how
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best to truncate Eq. 10 and to interpret the resulting

ground state policy will be an important direction for

future work. We demonstrate a prototypical heuristic

here. In the caption to Fig. 3, we show that the mini-

mal truncation order scales roughly as Kheur ∼ |S|/2
based on results for some small system sizes. One could

then imagine using Eq. 10 to find the ground state pol-

icy for much larger environment sizes with the similar

transition and reward structures using the established

small-size truncation heuristic.

In addition, it is important to note that there ex-

ists an in-built “backstop” to Eq. 10 for fixed state-

action space size |S ×A|, namely, that including terms

at K > |S ×A| makes little sense from the perspective

of either spin Hamiltonian physics or of the Markov de-

cision process since the term at K = |S × A| couples

all state-action policy variables together. This backstop

creates a well-defined and finite regime Kheur ≤ K ≤
|S × A| wherein one can study the effects of Hamilto-

nian superextensivity and methods for controlling the

truncation.

Finally, in order to see that the series truncation for

the hallway environment in the main text is reasonably

well-controlled for nearly all environmental parameters

(|S|, γ), consider the following plot.
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Heat map squares annotated to 1 (purple) indicate

that the optimal ground state policy at K remains so

at K + n, where here we show results for n = 1, 2.

Annotation to 0 (cream) means that the optimal pol-

icy at K is no longer the unique ground state policy at

K+n. These results were obtained by simulated anneal-

ing since the physical qubit counts grew too large to run

on the 2000Q quantum processor at these orders of K.

At K+1, the only environment setting that moves away

from the optimal policy is (|S| = 8, γ = 0.99). This

would appear to be a reasonable result since superex-

tensivity of the Hamiltonian is more severe at both large

|S| and large γ. However, at K + 2, the ground state

of (|S| = 8, γ = 0.99) returns to the optimal policy. It

may be the case that such a ground state fluctuation is

caused by non-inclusion of terms fromK+2 that resolve

dynamical frustration at K+1. At K+2, two points in

the environmental parameter space (|S| = 6, γ = 0.99)

and (|S| = 8, γ = 0.8) deviate from the optimal pol-

icy. Given the previous discussion surrounding the fluc-

tuation at (|S| = 8, γ = 0.99), we suspect that these

isolated fluctuations in the ground state policy may be

rectified at K+3, although difficulty in converging sim-

ulated annealing results as a function of total annealing

time due to the large numbers of variables at this order

prevents us from showing this rigorously. An interesting

future study could use high-performance computing re-

sources to study the convergence in the optimal policy

further past the minimal truncation order (K).

Nevertheless, even if imperfect, the convergent be-

havior of the ground state policy at and past the mini-

mal truncation order (K) is patently distinct from the

< K regime where the ground state policy is not only

not optimal, but also not converged for any environ-

mental parameter settings.

3 Hamiltonian Construction Without an Initial

Model

In our formulation, in order to calculate the couplings

one must have on-hand transition and reward functions.

When an agent does not have a model of its environ-

ment, i.e. the sets P and R are unknown, one typically

resorts to reinforcement learning algorithms in order to

determine an optimal policy. Q-Learning is one such ex-

ample of a reinforcement learning algorithm. One per-

forms Q-Learning by initializing the agent many times

in a simulated environment and updating and tabulat-

ing the Q function on the fly directly by its immediate

experience with discovered transition and reward func-

tions. In a similar fashion, one could imagine initializ-

ing the agent many times in a simulated environment

so that it could discover and tabulate transition and

reward functions to use in an eventual (perhaps coarse-

grained) policy determination via minimizing Eq. 10.

However, it is unclear that such an approach would

match the efficiency of dedicated reinforcement learn-

ing algorithms such as Q-Learning. We also note that

both model-free and model-based formulations of rein-

forcement learning exist, and so it is likely that some

of the techniques from the model-based branch of the

field might inform construction and minimization of Eq.

10 where transition and reward functions are initially

unknown (Janner et al. 2019).
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4 Variational Definitions and Proofs

Let ηµ be an arbitrary member of the policy function

space and ε a small number close to zero. As the field

π is varied π → π+ εη, the first variation of the Hamil-

tonian may be equivalently defined in two ways as

δH[π; η] ≡
∑
µ̄

ηµ̄
δH[π]

δπµ̄

≡ d

dε
H[π + εη]|ε=0

The quantity δH[π]
δπµ̄

in the first line is typically called the

“variational derivative” or “functional derivative” and

is defined at a particular point µ̄. If H is stationary

at the field configuration π then δH[π; η] = 0, and the

variational derivative must also vanish at every point(
δH[π]
δπµ̄

= 0
)

because the field variation was arbitrary.

This result is known as the fundamental lemma of the

calculus of variations.

If a functional H is minimized (maximized) at a

particular field configuration π, then the corresponding

variational conditions are

δH[π; η] = 0

δ2H[π; η] > 0

(< 0).

We first show that the definition of the Hamiltonian is

consistent with the aim of an MDP agent, which is to

maximize Qµ[π] ∀µ. Maximization of each Qµ[π] corre-

sponds to the variational conditions δQµ[π; η] = 0 and

δ2Qµ[π; η] < 0. Then, employing the linearity of the

functional derivative,

δH[π; η] = −
∑
µ

δQµ[π; η] =
∑
µ

0 = 0

δ2H[π; η] = −
∑
µ

δ2Qµ[π; η] = −

[∑
µ

# < 0

]
> 0,

showing that the Hamiltonian will be minimized as a

result. On the other hand, for our formulation to be use-

ful, minimization of the Hamiltonian should (at least

approximately) correspond to maximizing each Q func-

tion individually. To this end consider,

0 = δH[π; η]

=
∑
µ̄

ηµ̄
δH[π]

δπµ̄

= −
∑
µ

∑
µ̄

ηµ̄
δQµ[π]

δπµ̄
.

It is difficult to argue in the general case that

each µ-indexed summand identically must be zero in

the equation above. We note however, that the situa-

tion here vis-à-vis energetic tradeoffs between different

terms in the Hamiltonian is of a somewhat different

nature than energetic tradeoffs between the one- and

two-body terms in, say, the 2D Ising model that can

variously lead to paramagnetic, ferromagnetic, and an-

tiferromagnetic states. If it were the case, then we could

factor a general spin Hamiltonian into sums of Q func-

tions and recursively factor those in terms of spin vari-

ables. However, if that were the case, then we could

solve a general spin Hamiltonian via the dynamic pro-

gramming method typically used for solving MDPs (a

polynomial-time algorithm), presenting a serious chal-

lenge to the widely-believed complexity-theoretic state-

ment that P 6= NP .

Rather, we point out that each Qµ[π] may be, in

and of itself, considered a spin Hamiltonian, which in-

cludes k-body policy interactions at all orders of k (see

Eq. 6). The loose state-action index µ = (s, a) on each

Qµ[π] refers only to loose indices on the initial tran-

sition probability in each if the k-body couplings and

not to a loose index on a policy variable. Hence, each

Q function differs from the others only in its local tran-

sition and reward environment out to Kth order (upon

truncation) and not strictly on which many-body inter-

actions it incorporates or neglects. One could therefore

imagine maximizing each of the |S ×A| copies of Eq. 6

separately using simulated or quantum annealing and

then post-selecting which policy configurations are con-

sistent across the entire state-action space in order to

stitch together an optimal solution. The intuition be-

hind the Hamiltonian in Eq. 10 is that this consistency

requirement is definitionally built-in, requiring a single

minimization routine.

We argue that eachQµ[π] must individually be max-

imized for a class of environments, of which our hall-

way example and typical GridWorld environments are

members, where there are a few well-isolated terminal

states (e.g. dirt piles) at the extremities of the environ-

ment separated by a relatively larger number of “bulk”

states.

In the interior of the environment there is a homo-

geneity in the transition and reward functions. Because

of this, the energy landscape of each Qµ[π] looks the

same in the interior. That is,
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H[π] = −
∑
µ

Qµ[π]

= −
∑

µ∈bulk

Qµ[π]−
∑

µ∈boundary

Qµ[π]

= −NbulkQbulk[π]−
∑

µ∈boundary

Qµ[π].

In the second line we separate the sum into two sums,

one over Q functions that only couple policy variables

within the bulk and one that couples bulk policy vari-

ables into terminal states with transition and reward

functions different from the bulk. We note that there

is actually a third sum as well, which couples policy

variables from the terminal tiles to bulk policy vari-

ables, but these terms can be trivially set to zero since

by virtue of being a terminal state all policy variables

so indexed must vanish (see for example the terminal

state transition and reward structure in Sec. 2). In the

third line we use the homogeneity of transition and re-

ward functions in the bulk to replace the sum with a

multiplicity factor (Nbulk).

We now consider two limiting cases. First, if

Nbulk >> Nboundary and all reward functions are of

similar magnitude, then the contribution to the Hamil-

tonian from the bulk Q functions outweighs those of the

boundary functions

0 = δH[π; η] ≈ −NbulkδQbulk[π; η].

Thus each bulk Q function is approximately extrem-
ized. Further, due to the opposite sign of H and Qbulk,

minimization of the former leads to maximization of the

latter.

In the opposite limit, we may still have that Nbulk >

Nboundary, but here we assume that the reward func-

tions leading into the boundaries are of much larger

magnitude than the reward functions between bulk

states |Rabulk→boundary| >> |Rabulk→bulk|. Then, the

boundary summation dominates the energetics:

H[π] ≈ −
∑

µ∈boundary

Qµ[π].

Since each boundary function is well-separated from the

others, we assume that it acts on a disjoint subset of

the bulk policy variables π̃(µ). Then, we can perform ar-

bitrary variations only among each of the disjoint bulk

policy subsets π̃(ν) → π̃(ν) + εη̃(ν). The corresponding

variational derivative of H with respect to the disjoint

policy subset variable at a point ν̄ results in

0 =
δH[π]

δπ̃
(ν)
ν̄

= −
∑

µ∈boundary

δQµ[π̃(µ)]

δπ̃
(ν)
ν̄

= −
∑

µ∈boundary

δ(µ)(ν)
δQµ[π̃(µ)]

δπ̃
(ν)
ν̄

= −δQν [π̃(ν)]

δπ̃
(ν)
ν̄

.

Therefore, since each boundary Q function only de-

pends on a disjoint subset of policy variables, an arbi-

trary variation within the disjoint policy variable func-

tion space only affects the Q function that depends on

that disjoint function space (line 2 above). Because vari-

ation of the disjoint policy field also constitutes an arbi-

trary variation of the full Hamiltonian, minimization of

the Hamiltonian corresponds to maximization of each

boundary Q function independently (line 3).

We note that the numerical calculations in the main

text (e.g. Fig. 3) do not generally abide by the assump-

tions of the two limiting cases made here, while still

yielding ground state policies that are Bellman optimal.

This is encouraging since it indicates that the equiva-

lence between Hamiltonian minimization and Bellman

optimality may be a more general (if not completely

general) characteristic of Markov decision processes.

5 Definition of Long-Range, k-Local

Hamiltonian

At each order k, Eq. 10 is precisely a k-local Hamilto-

nian: a sum of terms each of which being a Hermitian

operator acting on at most k qubits (i.e. policy vari-

ables) (see for example Definition 2 in (Kempe et al.

2006)). If one is able to truncate Eq. 10 to finite or-

der K, which we have shown is a viable approach for

finding optimal policies in Fig. 3, then Eq. 10 formally

becomes a K-local Hamiltonian for which K < |S×A|,
the total number of qubits that would be involved in

the computation were order-reduction not performed.

For example, even at γ = 0.99 and |S| = 8, K = 4

while |S × A| = 16. It is true that such interactions

between qubits will in general be long-range. However,

nothing in the definition of a spin Hamiltonian prohibits

the inclusion of long-range interactions (Richerme et al.

2014).

6 K-induced Ground State Transitions

The K = 2→ 3 ground state transition in Fig. 2 of the

main text is definitely not a thermally-induced phase
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transition as is observed in classical statistical mechan-

ics, since we assume that the ground state of our K-

spin Hamiltonian (not to be confused with the full adi-

abatic transverse field Ising Hamiltonian of quantum

annealing) evolves at very low, constant temperature

as a function of its parameters. Whether the ground

state transition rigorously constitutes a phase transi-

tion as a function of the “parameter” K is an interest-

ing question. When the truncation order of Eq. 10 is

incremented K → K + 1, a number of new couplings

γK+1Jµ1...µK+1
are changed from zero to non-zero val-

ues. All couplings also change when γ is varied. The

transition of a ground state as a function of Hamil-

tonian parameters is highly suggestive of a quantum

phase transition. However, given that the degrees of

freedom in Eq. 10 are purely classical (the mapping to

qubit operators being only necessary for quantum opti-

mization heuristics), it appears untenable to argue that

such a transition is mediated by quantum fluctuations.

7 Parameter Selection in Fig. 4

We note that the scaling of spatial resources in Fig. 4 is

relatively insensitive to the parameter (γ) setting in the

sense described here. The purpose of Fig. 4 is to show

that the asymptotic scaling of logical variables (|V |)
as a function of problem size likely follows the polyno-

mial O(|S ×A|K) result given by (Fix et al. 2011) and

that the number of physical qubits (|Q|) also follows a

polynomial scaling given that only small-size (|S| ≤ 8)

problem instances of the hallway can be treated on the

D-Wave 2000Q annealer. As can be seen in panel a

of the plot below, the scaling in |V | is nearly identi-

cal for γ = 0.6 and 0.7 (For |S| ≥ 5) and again for

γ = 0.8− 0.99. Meanwhile, in panel b the large |S| be-

havior of |Q| is again equivalent for γ = 0.6 and 0.7

and again for γ = 0.8 − 0.99. Therefore, in terms of

spatial resource scaling (and temporal complexity for

that matter), γ = 0.6−0.7 constitutes one approximate

equivalence class and γ = 0.8 − 0.99 another. The se-

lection of equivalence class representative lines γ = 0.6

and γ = 0.9 in Fig. 4 is simply for visual clarity.
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