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1 Notation for Proofs

For given real-valued functions ! and u, we define the bracket [l,u] as the
set of all functions f such that | < f < u. We call a bracket [l,u] an e-
bracket if d(l,u) < € for a given constant ¢ > 0 and a (semi-)metric d. For a
given class of real-valued functions F, the bracketing number Npj(e, F,d) is
the minimal number of e-brackets which is needed to cover F. The covering
number N (e, F,d) is the minimal number of e-balls, {g : d(f, g) < €}, which is
needed to cover F.

For given constant € > 0, the class of real-valued functions F on R?P x R
and the data Dy, = {(Y1,21), ..., (Ya,%n)}, we denote Njj(e, F) as the minimal

number of partition {F,...,Fn} of F such that

< €.

1 n
sup — > Egy o | sup |f(zi, i) - g(ai, V)
1<j<N n i=1 fagefj

We define the set of density functions
Homix := {77() = /(;SU( —2)dF(z) :0 >0, F € M[-C'n, C”n]} (1.1)

for the constant C’ > 0 used in (??). Recall that F = (F + F~)/2, dF~(z) =
dF(—z) and ¢, (2) = (V2ro) "t exp{—22/(20?)}, for any 2 € R.
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2 Proofs for Posterior Convergence Rates

Lemma 1 Assume that the prior conditions (2)-(8) hold and ny satisfies
(D1)-(D4). Iflogp < n?, then there exists a constant Clower > 0 not depending
on (n,p) such that the Py, n,-probability of the event

/ R,,(0,n)dII(6, 1)
@XHmix
> exp [Clower{log m(s0) — solog p — Al|6ol|1 — nés}] (2.2)

converges to 1 as n — oo, where &, = n~ /") (logn)to and to = {x*(1 +
T+ ) + 1}/ 2+ K87,

Proof Let 55 = &,(log(1/&,))"", and define

Hp = {n € Huix : By, (logo/n) < A, E,, (logno/n)° < A&, (2.3)
o <ot}
for some constant A > 0, and
O, :={0€O:0—61<n> Sy=>5}.
Note that

/ R, (0, n)dIT(6,7) > / R, (0, n)dIT(6, )
O X Hmix

én X ﬁn

= [ Ranall@) 16, x ),
OnXHnp

where IT = IT | 8, x, is the restricted and renormalized prior on én X ’;qn,
that is, I1(-) = II(- N O x Hy)/II(On x Hy). We will show that

(6, x Hyn) > exp [Cy (log 7 (50) — s0logp — Allfo]l1 — ngi)} (2.4)
for some constant C; > 0 and all sufficiently large n, and

]P)Oomo (/N _ Rn((g)n)dﬁ(e)n) S exp(—égngi))
OnxHn

2(A+ M?)
(Cy — A —2M)2né2

(2.5)

for some constant~C~’2 > A+2M. Then, (2.4) and (2.5) complete the proof by
taking Clower = (C1 V Ca). N _ _ N
To obtain inequality (2.4), because I1(0,, X H,,) = Ig(O,,) Iy (H,), we

derive lower bounds for ITg(6,,) and ITy(H,) separately. By Lemma 2, we
have

Iy (Hy) > exp(—Cyné2) (2.6)
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for all sufficiently large n and some constant C; > 0 not depending on (n,p).
By the definition of Ilg, we have

I6(6,) = /én dlle(0) = mp(s0) (i)_l /én 950 (0s,)d0s,
and

/~ s, (0s,)d0s,

n

> 67)\H00”1 /~ 950(050 - 00750)d050

n

A\
:efxl\eolh/~ () efxnesofeo,so\lldgso
8, \2

P
> o= Mool <) oA / dbs,
2 {05 €R®0:]|05,— 00,50 [2<(s0n10)~1/2}

)\ S0 —1/2 7_(_80/2
> o AMbollr [ 2 —An 10y=s0/2_
‘ 2) °© T(soj2+ 1) 50" )

Thus, the lower bound for I1g(6,,) is given by

H@(Qn)

—1 s
> mp(s0) P e_)‘HHOHl—)\Tfl/2 AT ’ 1
= TP s 2/s0m% ) T(s0/2+1)

So 1
§ —so (g 1 1ye-Mooli—viegs [ VAVI/P
> mp(S0)p (so +1)e 2\/son® I'(so/2+1)

L\
> exp {1og ﬂ'p(SO) — S0 logp — )\||90||1 - \/@} <\/M>

1
> exp {log 7p(s0) — sologp — A||6o|l1 — 250 log p — s log(\/%n%)}
> exp {8{ log 7, (s0) — sologp — /\||00||1}}
for all sufficiently large n because we assume p > n. Thus,

(6, x H,)

= o(0,) 13 (Hy)
> exp [8{ log m,(s0) — sologp — )\||90H1}} exp(—Cyné?)

> exp {(8 Vv CH){ log m,(s0) — sologp — Al|foll1 — ngi}},

which implies (2.4) by taking C; = (8 V Cy).
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By the Jensen’s inequality,
oo ([ RuO)TI(0.0) < exp(-Coni?))
@n XHn
- n(Y; — 270)
<P / log ———~i 22 _Larg,n) < —-C né?
— 90,770 < énxﬁ" ; { g ’]70(Y _ .’,UTGO) } ( 77) 2
= Poyny (VB — Po) < ~Cov/né — VP, (2.7)

where P, := n L0 [5 7 logn(Yi — 2T0)/no(Y; — 21600)1dII(6,7) and
Py := Eg, n, [Pn]. Note that

9
—Py < max Eg, ,, { / wdﬂ(e )}
¢ énxﬂn

n(Y; 0)
= In,ax/~ _ Eeof’]o
v SO xH,

<log —, 0o)
no(Y; — x1 0p) n(Y; — x 6o)
= E 1 i 1 dIT(6
mox [ B & n(Y ~aToy) 18 i = aTe) ) MO
/lo
y

o (Y T
— = | dII(#
i —orey) 410

< A& + max/ _Q;TH;)) mo(y; — & 00) dy; dII(0,n)

On ><7-Ln

and
n(y — x"6o) _ T
/log n(y —20) oly = " Go)dy
< |z"(6 — )| / 0y (y — 2700 + ta” (6 — 0))Ino(y — 2" 0o)dy  (2.8)

for some t € [0, 1] by the mean value theorem. Note that for any y € R,

L[ ly- — N\ JF
; o2 ) 1y — 2|os(y — 2)dF(2)
sup |0, (y)| < sup J 9o —
neEHn nEHn f (bcf(y - Z)dF(Z)
1
< sup (sl +C')
nEHn
< UOn (1 + 007L)(|y| + C/ )
< n*(lyl +n)

for all sufficiently large n. The above supremum is essentially taken over (F, o)
satisfying (2.3) because of definitions of (1.1) and (2.3). Thus, the right hand
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side of (2.8) is bounded above by

MVIogp [0~ 6ol [ 1 (1y = 2780 + 57(6 ~ 60)] + m) mly ~ =" o)y
< M+/logp 16 — foll1n®
] [ = aTtulmty o7 00)dy + 310l ~ 6ol + v

< 2M+/logp n™2 < 2Mn~!

for all sufficiently large n on én X ’;qn, because we assume condition (D2) and
log p < n?. Therefore, (2.7) is bounded above by

Poyunn (V(Bo = Po) < ~Cav/né + Vi(AZ +2Mn "))

< Poy.no (\/ﬁ(ﬁn - PO) < _(6’2 - A- QM)\/ﬁgi)
1
< —
(Co— A—2M)2nél

X max Varg, », [/N _logn(Y; — x1'0) —logmo(Y; — x00)dII (0, n)]
v On X Hy

1
< —
= (Cy— A—2M)%nét

2
x max Eg, ,, [ / _ (logn(Y; — 2T0) —logno(Y; — 2T 6o)) dIT (9777)}
? O, XH

n n

1
< —
T (Cy— A—2M)%nél

x max Eg, n, [/~ _ (logn(Y; — 2]0) —logmo(Yi — x?@o))2 dII (o, n)}
v On xXHy

2
no(Y; — x16) ~
E log ——%+—=) dII(0
00,m0 (Og 77(}/1755310) ( an)

: /
= — max
(Cy— A—2M)%net i Jo,x4#,

for all sufficiently large n and any constant Cy > A 4+ 2M. The second and
fourth inequalities follow from the Chebyshev’s inequality and Jensen’s in-
equality, respectively. Note that

2
no(Y; — 2X6)
E log Mo\i — &5 Yo)
oo ( o8 n(Yi —a]0)

9 2
mo(Yi — x1'6o) Y — )

< 2E log ———7~ 2E log - v —2Ta)

= 60,10 ( 08 77(}/1 — x?oo) om0 | 108 77()/1 - xfe)

M)Z

)
< 246, 4 2Eg, 4, <log n(Yi = 270)
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and

/ (bgM)Qno(y — 2"00)dy

n(y —z70)
: 2
< {xT(G — 90)}2 / |€n(y — 270y + tmT(Go - 0))| 1oy — zTﬂo)dy
< M?10gp|0 — 0o3n*{ / 29%n0(y)dy + AM2 log 0 — 0ol3 + 40}
< M?n~!

for all sufficiently large n on O, x Hn. T hus, we have

~ . 2(A+ M?)
P R, (0,1)dIl(0,n) < exp(—Coné?) ) < —
oo ([ R0 ) < exp(=Con) ) = =2

for all sufficiently large n, which completes the proof. |
Lemma 2 Under the conditions in Lemma 1,
Iy (Hn) > exp(~Cynéy),

for some constant Cyy > 0 not depending on (n,p), where 7—~Ln and €, are
defined at (2.3) and Lemma 1, respectively.

Proof We closely follow the steps in the proof of Theorem 4 in 7. We consider
the univariate density case while the original proof in ? considers d-dimensional
case.

By Proposition 1 in ?, there exist constants d, sg, ag, By and Ky not de-
pending on (n, p) such that

dH(on KO'BO') < KoUﬁ (29)
and
IED90JY(J (Eri) < B0045+2V+8

for any o € (0,s0), where K h, = [ ¢o(x — 2)hy(2)dz, he is a probability
density function with support inside (—a,, a5), as = ap{log(1/c)}” and E, :=
{z € R:ny(z) > oW+ H8)/0} C {z € R : |2| < a,}. Fix by > {1V 1/(28)}
such that & {log(1/&,)}°/* < &,. Let S5,, = {0 > 0: 072 € [5,7,55,°(1 +
529)]}, where 6o, = €}/ﬁ{log(1/€n)}_1/5. Suppose that o € S5, .

By Corollary Bl in 7, there exists a probability measure F, = Z;\;l P;0=;
satisfying

da(Kohoynr, o) < A1 {log(1/¢,) /4, (2.10)

where N < Doo~{log(1/0)}"/ " log(1/é,), z € [~a5,a0] (i =1,...,n) and

min,z; [2; — 2| > o€, for some universal constants A; and Dy > 0. Note
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that N < Doo~H{log(1/0)}"/7 log(1/&,) < Dyo~"{log(1/&,)}* /7 for some
universal constant D; > 0.

Let Uj = {z € R: |z — 2z;| < 021 /4} for all j = 1,..., N. Then, one can
choose Uny1,...,Uk such that (i) {Ui,...,Uk} is a partition of [—a,,as],
(ii) each U;(j = N +1,...,K) has a diameter at most ¢ and (iii) K <
Dyo~{log(1/&,)}**/7 for some universal constant D, > 0. Furthermore,
one can extend this to a partition {Ui,...,Upn} of [-C'n,C'n] such that
M < Dyo={log(1/&,)}'+1/™ < Dy {log(1/&,)} T/ 7H1/8 and Dyoer <
a(Uj) < 1forallj =1,..., M and for some universal constants D5 and D3 > 0
because of the continuity and positivity of «.

Let pj =0 forall j = N+1,..., M. Define Ps,, as the set of probability
measures F' on [—C’'n, C'n] such that

M

~2b .
Z; [F(U;) —pj| < 26, and - min F(U;) >
j:

Then, we have é201 M < D4e2 =P {log(1/e,)}1+Y/7+1/8 < 1 and ming <<
a(U;) > D30é2 > D3ét for all large n. By Lemma 10 in ?,

W(P&On) >y exp{ - CIMIOg(l/gn)}
> C exp [— ch’Qégl/ﬂ{log(l/gn)}%l/ﬂrl/ﬁ}

for some universal constants C; and ¢; > 0. In fact, C; = I'(a([—C'n, C'n])),
but it can be replaced with a universal constant not depending on n by con-
sidering I'(a([-C'n,C'n])) > I'(a([-C",C"])) =: C;. Also note that, by (?7?),

T(S50,) = 600, " o™ exp(—C"Gon)

> Dyexp [ — Ds&, "/ P{log(1/€,)}"/?]

for some universal constant D, > 0 and some constant D5 > 0 depending only
on C” > 0in (??). Therefore, by Lemma Bl in ? with V; = U forj =1,..., N
and Vo = Ujj‘iN+1Uj, we have

dH(nFo,aanF,U) S A2gl7711 (211)

for any F € Ps,,, 0 € Ss,, and some constant Ay > 0 not depending on
(n,p). Thus, by (2.9)—(2.11),

da(no,Nr,e) < /135&
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for any F € Ps, , 0 € Ss,, and some constant Az > 0 not depending on
(n,p). Note that d% (1o, nr,s) = d3; (10, F- ») due to condition (D4) and

dir(no,np.0) = / (Vo = V) dp

(\/77_ \/(T}F,o + 77F*,a)/2)2d,u
(ﬁ - \/(nF,a + nF*,a')/2)2d‘u

— —

(V10— /MF,o |>|v/M0— /M- |

+
—

(Vo — \/(vmcr e 0)/2) dp

Vi =/ | <V = flp— |

(/o — v/Trw) dpe

IN
—

|\/7770_\/7]F,0'|>‘\/"]70_‘/77F*,0|

2
(V7o — VIF- ) dp
|\/77;07\/7]F,6|S‘\/n707‘/77p*,g|

4 (0, nre) + dir(no,nr- o) = 2d3 (10, Np,o)-

+

QU

<
Therefore, we have
A (0, 1p.5) < V24355,

for any F' € Ps,, and 0 € S5, .
Note that for any F' € Ps,,,, 0 € Sz, and = € [—a,, Gs),

77*,0(93) -1 ~2 \—1/2 (x_Z)Q ;-
oy = upw0) e [ { - S arc)
K,

> K160y {F(Us(a)) NF(Uj(—a))} > 5

et
for some universal constant K; > 0, where J(z) is the index j € {1,..., M}
for which € Uj;. On the other hand, for any F' € Ps,,, 0 € S5, and

x ¢ [—aq, a6,

on?

n
2
> Ki6,,, exp ( - = )(1 2¢2b1)
Oon
K ~—1 2372
> —0on exp(— —5 )
Oon
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for all large n. The third inequality holds because F' € Ps,, . Define ¥ =
Go 41K /2, then log(1/9) < Kalog(1/é,) for some constant Ky > 0 de-
pending only on b;. Then, for any F' € P5,, and o € S5,,,

e <o)
)
= /|x>a50n { (77F o

20 222 2
o [{Z2en e
|z|>as,, 1 Oon
K
&43/ zino(x)dx
Oon \:c|>a;,0”

) (E XS) /QIP,,O(EC )

Ton
UOn

< K4(~T§g+y

<

for some constants K 3 and K4 > 0 not depending on (n,p) by construction of
Since ¥ < e, it implies that

UOn

w{los (1)1(00 <)} < Gl
NF.o Mo

Therefore, by Lemma B2 in ?, for any F € P5,, and o € S;,, ,

B {10 ()}

2 _ "o NF.o
< diy, ) {1+ 21og(1/0)} + 28y, {log (2)1(2 < 0) }

< 2A2625(1 + 2K, log(1/e,)} + 2K,50° 1
< 24212 + 2K3)&

and

. {los (1)}

< 2 (no, np.,) [12 + 2{ log(1/9)}*] + 8E,, [{ log (nzoo)fl("” < 19)}

< 242500 [12 + 2K3{log(1/&,)}] + 8Ka550t"
< 2A2(12 + K2)&2.
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Thus, by taking A = 242(12 4 2K2) in H,, defined at (2.3), we have
[Ty (H.,)
> H’;.L((F,O') FePs,,0€ S&on)
> C\Dyexp [ — a1 Dy loB(1/6)Y2H/ 117 - Dyl (1 /)y
> C1Dyexp [ — (a1 Dy v D5)€fl*/ﬁ{log(l/én)}2+1/7+”*/5}
> exp { — (c1Dy V Ds)néz }

for all large n and some constants ¢1, D} and D5 > 0 not depending on (n, p).
By taking Cy = (¢1 D% V Ds), it completes the proof. |

Proof (Proof of Theorem ?7?) Suppose A||6p]|1 < Cxsologp for some constant
Cy > 0. Let B:={(0,n) : sy > R} for some R > sg and E,, be the event (2.2),
then we have
Eoo,no1I(B | Dy)

< EOO:"]O [ (B | D )IEn} + IP)‘90,770 (Evcz)

& S5 Rn(0,m)dI1(0,n)

= o fRn 0,m)dII(0,m)
< exp [Crower{ — log mp(s0) + sologp + Al|6o|l1 + né. }] - I (B) + o(1)

+0o(1)

< exp [Clower{(As +1)s0log p + s log p + Caso log p + n785% (log n)20 }}
xII(B) 4+ o(1)
< exp [Clower(AB +2+C\){s0V n 3R (logmn)*o~'} 10gp] -I(B) +o(1)

Note that

7).
723 me(2)

A R—so
< 2t (35

< exp{ - (R- 50)% logp}

by Lemma 1 and condition (?

by condition (??). Thus, we have
Ef)oJIUH(B | Dn)
A
S exp |:* {(Kdim - 1)74 - Clower(AB + 2 + C)\)}

x{so V n T (logn)?to—11 logp} +o(1)
= o(1)
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by taking R = Kqim{so V N (logn)?=1} for some large constant Kgi, >
1+ 2AZlClower(A3 + 24 Cy), which completes the proof. [ |

Proof (Proof of Theorem ?7) Define
O, ={0€0:]60—01 <p*(p+vn)+ 0o, so < sn/2}
and for positive constants C'; and Cs, which will be described below, define

= {77() = /qﬁa( - z)dl?’(z) with ' = Zﬂ'hdzh :

h=t (2.12)
Zp € [—an,an),h < Hp; Z Th < €n; 02 € [08,,08, (14 e2)Mn) 5
h>Hp,

where af' = 003“2 =M, =n,e2 = Cys,logp/nand H, = |Cys, logp/logn]|.
We first prove that

Eoyn,11(0 € ©5, | D) =0(1) and (2.13)
Eo, n, I (n € Hy, | Dy) = o(1). (2.14)

Suppose A||0o|l1 < Casologp for some constant C > 0. By Lemma 1 and
Theorem 77,

Eoq,o (0 € O, | D)
< Eoono (|0 = bolly > p*(p+v/) + [80]l1 | D) + Egy o [T (59 > 0/2 | D)
< Egono (1 (10 = bolls > p*(p + V1) + [0ll1 | D) Ik, ] +o(1)
COWQI‘ A +2+C
< 1T (10— folls > 9 (p + /) + (6ol - exp { Sovertfs 2 )
dim
+o(1),

Sn logp}

where F,, is the event (2.2). Note that

o (116 = bolly > p*(p + v/n) + [|60]l1)
o (110]]1 > p*(p + V)

o (101 > p*(p+ V1) | so = 5) mp(s)

[
M@

@
Il
—

s+ max o (|6n] > p(p + v/n)) - p~ 445 A3

NE

1

< p-exp (—Ap(p + vn))
o o)

w
Il
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because Ap > y/n. Thus, (2.13) holds due to condition s, logp = o(n). On the
other hand, by Proposition 2 of 7,

NG

R fin
604( ) 10g 1} + eXp(*C”O'O_nmzz)

S Hyoxp(-C"a3) + { S5 o

+05,2% (1 + 6%)72Mﬂa3

C splogp
logn

exp(—C"n) + exp(—Cys,, logp) + exp(—C"'n)

+ exp(—Ciaszsy log p)

< exp{ _ (Clag A\ CQ)

5 Sn logp}.

Then, we have

E%JIOH(n € HSL | Dn)
< Egono U1 (n € Hyy | Dn) Ig,] + 0(1)

COWCYA 2
gnH(%;).exP{ 1 (2;,(: +Cx)$nlogp}+o(1)

Clower (A3 +2+ O)\) }S lo
2K g n 108 P

< exp {—;{(C&ag ACy) — = o(1)

for some large constants Cy and Cy > 0. Thus, we have proved (2.13) and
(2.14).

By Lemma 2 and Lemma 9 of 7, if for some nonincreasing function ¢ —
N(e) and some €], > 0,

N (55:0n X Hasdn) < N(e),
for all € > €/, then there exists test functions ¢,, such that

Py noPn S €xp (—gei + log N(en)) and

sup Py, (1 — dn) S exp (_ggi) (2.15)
(0,m)EORXHn
dn((0.1).(00.10)) > n
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for all €, > €. For any (6%,1;) € O,, x Hp, i = 1,2,

dfq(m(- - xTel)a n2(- — $T92))

=/<\/m(y—wT91)—\/nz(y—mTGQ))Qdy
2/{\/?71(yxT91) \/ﬂ1(wa92)}2dy
2/{\/771(y—wT92) - Wz(y—xTez)}Qdy

1. 2
11 (y + tdy2) 2
<2 |xT(91—92)|2/ —————dl | dy+dy(m,n2)
{ 0 m(y + tdi2) "
+td
{leogpel 02| / / (’71 vl ) mi(y + tdaa)dydt

i (y + tdiz)
+d3 (m, 772)}

2{ M2 1og p 10" — 62| - 0/ + %y (. m2)

where di5 := 27 (' — 62). The last inequality holds because

{260y - 2)dF ()}
n(y)

g/(”‘ ) b0y — )dF(2)

by Holder’s inequality and

/(ZEZ;)QU(y)dyS//(y;gz)2¢a(y—z)dﬁ(z)dy
2 —
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Thus, we have

log N (3766,@ x Hmdn)

€ €
S log N (72Mn1/(2a2)\/@»9m H ’ ||1> +log N (E,andH)
sn/ .
“ o Z @ (2t Vi) + 10l oy T Togs)
§j=0
+K{Hn log (U‘:)”e) + H, log (%) + logMn}
Sn/2 .
<10g (Y [p{pQ(er\/f) + ||90||1}72M\/mr
j=0
+K{Hn log (U‘;”e) + H, log (%) + log Mn}
4 1/a1+1/(2a2)
< s (%) g () Gl (1
+ log n}
=: log N (e)

for some universal constant K > 0 by Proposition 2 of ?. Note that in the
last term, we do not have the term M,e2 while Proposition 2 in ? includes
this term, because they considered d-dimensional densities. It is easy to see
that from their proof, the term M, €2 can be omitted if we focus on univariate
(d = 1) densities. Note that

log N(e,) < 5sy logp + KC2{2 + a;t + (2a2) "'} s, logp
=[5+ KCo{2+ a7 + (2a2) "' }] s, logp

Thus, by (2.15), there exist test functions ¢,, such that
Cy _1 —1
Poy noPn S €xp 7757,, logp + [5+KCQ{2+(11 + (2a9) }]sn log p

and

C

sup Py (1 — ¢n) S exp (—;sn logp> .
(9177)€@n,><7'in

dn ((0,m),(00,m0))>€n
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Therefore, by Lemma 1, for a large constant C; > 0 such that C; > 10 +
2K02{2 + a,l_l + (2&2)71} and Cq > Clower(AS + 2+ O)\)/Kdim,

)

E @ X H d ((0’77)7 (9077]0)) > €n

]EG(),’OO dn 007770)) > €n

< ]E«%,no

(tntt
(0
< oy [n ((e 1) € O X Ha : dn((6,1), (B0,0)) > n

+o(1)

< sup Py, (1 — ¢n) - exp {
(0,M)EO, XHy,
n((6,m),(00,m0))>€n

dn (
=o(1).

Dn> +o(1)

D)1= 5]

CVlower(A{’) + 2 + C)\)
2[(dim

Sn logp} +o(1)

It completes the proof by taking Ky = vC1 > \/Clower(Ag +2+C)\)/KaimV
V10 +2KCo{2 + ! + (202)1}. n

Proof (Proof of Corollary 7?) Let (T, (n))(z) = n(x + z). Note that for any 7
satisfying (D1)-(D4) and 1 € Humix,
mf dH(777 2(10)) < du(n, Tyr 9—g,)(10))

= [/ (Valw) — [ noly + 2T (6 — 6y)) )Qdy} -
= [/ (\/n(y —270) — \/no(y — z76)) )Qdy} v

= du(n(- —2"0),m(- — 2"0)),

thus

lnf dy (777 (770 <

X 1/2
EZ Ay (n(- — =7 0),no(- — 2] 90))]

dn( 95 )7 (007770))'
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For any z € R,

3, (no, T=(m0)) = /\/no y+2)— Vno(y))’dy

([ )

o () s

-
L

< ZzEno (@

2B8+v
) <
Mo

22025_;,_,,

for some constant Copy, > 0 depending only on (8, v) because of condition
(D3) on ng and 28 + v > 2.

If || < d(n,m0)/(24/C2p+v), then

du(n,T=(n0)) = du(n,m0) — dr(no, T=(n0))

> dg(n,m0) —\/Copyu 2|

and otherwise, if |z| > dug(n,10)/(2/C28+v)

du(n,T=(no)) > dv(m %(m0))
—sgp\n( ) = T (n0)(B)]

‘/m n(y)dy—/oo no(y—i—z)dy‘
‘/ _/z 770(y+z)dy—/O_Zﬂo(y—kz)dy‘

2
= /0 o (y)dy (2.16)

v

> { [ s} A {2y dnlm) ot w(),

where (2.16) holds due to the symmetric assumption (D4) and 7 € Hpix.
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Thus, we have

| sp 1o
KHel ngp > dn((evn)a (HOaUO))

2 inf £ du(n, T= (o))

- B vt AONICAEY

because s, logp = o(n), which completes the proof by taking Ketn = Kel %

—1
1 .
{m info<y<i 770(2/)}} : u

3 Proofs for Bernstein von-Mises Theorem

We first present three lemmas (Lemma 3, Lemma 4 and Lemma 5), which
directly appear in the proof of Theorem ?7. Other auxiliary results used to
prove these lemmas will be provided in Section 5.

Lemma 3 Assume that the prior conditions (77), (7?) and (?7)-(??) hold.
Let

- {77() — /(;50_(. — z)dl?’(z) with F' = Z'frhézh :
h=1

zh € [—an, an], h < Hy; Z Th < €n; 02 € [03,, logn A {og, (1 + ei)M"})},
h>H,

2(12

where a, = (logn)7, €2 = Cys,logp/n, H, = |Casnlogp/logn|, 04,2 =
splogp, M,, = n for some positive constants C; and Ca, and define

H = {n € 1, dur(n,m0) < Kewar/nlogp/n | (3.17)
Then,
Ego.no 1T (0 € (1) | D) = o(1)
for any no satisfying (D1)-(D5).
Proof We have

()In)

C

E9oﬂ70
< EQU '70

(
/sy lo
+ E90 10 (dH s 770 > Keta &b ’D ) (318)
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Note that Lemma 1 still holds for the prior I3, with the support conditions
(??) and (??) because the proof of Theorem 4 of ? can be easily modified for
the priors with the restricted support with (??) and (??). Thus,
I['390771017 (77 € (H;L)C | Dn)
< Eggno [ (n € (H3,)" | D) I, ] + 0(1)

c CowcrA +2+C
< (1)) exp { Aol 20 222

5n logp} +o(1),

where F, is the event (2.2), §,, = 2Kgim{so V nwfﬂ* (logn)?o=1} and to =
{1 +77 1+ 871 +1}/(2+ x*B71). With a slight modification of the proof
of Proposition 2 in ?,

HH((H;)C) 5 H, exp{ _ C’/az1} + {ei{(i@) log (ein) }Hn

+ exp(—C'"oaf“z) + 0(;12“3(1 4 €2)72Mnas

1
<expy — =(Crazs ACy AC")s, logpb.
2

Thus,

EQO,UDH (77 € (H’lﬂ)c | Dn)
1 Clower(A3 + 2 + CA) ~
< _ - 1
< exp{ 2(C’1a3 ANCy AN C")sy logp + Ky Sn logp} +o(1)
=o(1)

for some large constant Kgi, > 1. Furthermore, it is easy to see that Corollary
?? also holds for for the prior ITy; with (??) and (??), which implies that (3.18)
is of order o(1). |

Lemma 4 Suppose that (sp logp)H% = o(n'=%) holds for some constant
¢ > 0. Further assume that ¥(sy) is bounded away from zero. Let Ag := {h €

RIS ||hlly > Mys,y/logp} for some sequence M, such that \/Togp = o(M,,).
Then

Jas e (W1 Ghps — 5h" Vi sh) dh
sup sup = = T
SeS, ety Jgis) Xp (h Gnn,s — 3h Vn,n,5h> dh

where HY defined at (3.17) and

=op,(1), (3.19)

2 <

n K eta nl
S, = {S 18] < %, 160, se theta /5 ng}.

w(sn) n

Proof Note that

Egyno | sup sup [|Gr s
S€ES, nEHS,

Ioo> < logp
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by Lemma 12 and [hT Gy, ;5| < ||hl1 - [|Gnoy.slloc- Also note that
BV, sh = v, - kT Xsh

1Z
= ;n | Xshll3

Y

1 1
Vn'¢2(sn)\|h||§'; = Vn'iPQ(Sn)lth?';-

n

Thus, we have

v sup sup Gl < Gl 50
Ses, heds nerr W Vansh ™ ses, nedsnens — vn¥%(sn) - [[R]13
< OPo(l)’
because /logp = o(M,,) and v,, 2 1 holds by Lemma 7 and assumptions on
No- It implies that

1
sup sup / exp (hTGn’n’S - hTVn,n,Sh) dh
S€S, neEMH}, J Ag 2

< sup sup/ exp (fChTVnmysh) dh
SeS, neH;, JAg

< [ e (~Clnig) dn
As
sn 1~
< (VM s, logp) * exp <—30,M72LS»,L logp)

for some positive constants C, C' and C’, and all sufficiently large n with Py, -
probability tending to 1. It is easy to show that

1
/ exp (hTGn,mS - 2hTV,wsh) dh
1Sl _1 1 . 2
= @27m) = Vs exp { o[l HsLngllz ),
n

where Hg = Xs(X§Xs) ' X% and L,,,, = (én(yz - xiTHO)) € R™. There-
i=1

fore, the log of the left hand side of (3.19) is bounded abovelBy

s 1~ S 1
?n log (vmM2s, logp) — EC’M,QLSTL logp — % log(27) + 3 log |Vy..s]
1 ]
gy Vsl
n 1 ~ n
< S—log VaM?2s,logp) — =C'M2s, logp + s—log M?v
9 n 3 n 4 non

with P, y,-probability tending to 1. The last term tends to —oo as n — oo,
thus we get the desired result. |
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Define
" Sn lo
oF = {9 €050 €S 10— folly < Knewa s ip, (3.20)
1 Sn 1o
16 = 60ll2 < Konera ngﬂnxw—ew2<znmmw%xgp}
n

and let M, 0, be the variant of 8} with M, Kiheta instead of Kipeta.

Lemma 5 (Misspecified LAN: version 1) Suppose that s&(logp)!! =
o(n'=%), (sn logp)H‘% =o(n'=¢) and (s, logp)6+% (logp)? = o(n'=<) hold
for some constant { > 0. Further assume that ¥(s,) is bounded away from
zero. Define O and H} as (3.20) and (3.17), respectively, and let

7‘"(9, 77)
. n
i= L, (0,1) — Ln(60,m) — V(0 — 00)" G lgy o + 5(9 —00)" Vo (0 — 69).

Then, we have

Eg4,m6 ( sup  sup Irn(9,n)l> = o(1)

0EM,, O} nEH,

for any no satisfying (D1)-(D5) and some sequence M, such that \/logp =
o(M,).

Proof Define 7,(0,n) as in Lemma 11. Note that

0€M,, 01 neHs

Eeo,no ( sup sup rn(evn”)

< Eeo,no sup  sup ‘Tn(gv 77) - fn(aa 77)‘
0eM,OF neH},

+Eeomo< sup  sup If’n(b‘,n)l>,
0eM,, O nEH,

and, by Lemma 11,

]Eeomo ( sup sup |Fn(9777)|>

0€M,, 01 neHs

s, logp)°

< M, ¢%®wﬁﬂ%mmémwﬂ<
~ 6%(sn) n

M3s, [logp :
+ 2 - sp(logp

= o(1)

Njw
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15
for some small constant ¢’ > 0 and some sequence M,, when (s, log p)1+"'2 =

o(n'=%) and (s, logp)6+& (logp)? = o(n*=¢). Thus, it suffices to show that

Eéq.,no ( sup  sup |r(6,7) —M&n)l) =o(1).
0e M, O nEH},

By the definition of r,,(8,n) and 7,(6,n),

7 (6.1) = Fa 6,0 < V|6 = 00) Gl — o)

+ 210 = 00)" (Vo = V)0 = 00)] . (3:22)

(3.21)

The supremum of (3.22) is easily bounded above by

sup sup n |(9 — GO)T(Vn,n — Vino ) (0 — 90)|
0EM,,0F neH:

= sup  sup |y — vyl - X (6 6o)|3
0e M, 0 neH?

2_¢

25,2
S sup  sup € *Mjs,logp
0€ M, O; nEHS,

by Lemma 8, where €, = Kgtar/Sn logp/n, which is of order o(1) under the
assumption s8 (logp)tt = o(n'~¢). Note that

V| (0= 007G (Coun = founn )| < VN0 = B0ll1 - G Cony = fouons)loo

MnSn ) )
< V1ogp - sup ”Gn(é%m - €9O7TIO)||OO'
B(sn) neEH

Define
L= {Mnsm/logp e (égom - 55907,70> ine ’H:‘L}

and L, := U?:lﬁn,j, where e; is the jth unit vector in RP. Then L, (z,y) :=

M+/logp - Mysn\/10gp - sup,cqy- 10, (y) — £y ()] is an envelop function of £,,,
and '

. . 2 2
| Lalln S Masalogp- {E[ sup (£(Y) =y, (Y)) }}
neH;,

Sn 1ogp) 3¢

< M,splogp - (
n

by Lemma 8. We will use Corollary A.1 in ?, which implies

M sp, \% logp - Eeoﬂ]o < Sl%) ||Gn(290;77 - éeo,no)||00>
neH:

(P22
hS / 1/log]\fﬁ(e,ﬁn)de.
0



22 Kyoungjae Lee et al.

Note that

n €
N[](Eaﬁn;]) S N[] (]ansnlogp7gnaL2(P’ﬂo)> ’

where G,, := {{, : n € H}}, and

log N[ (€,Gn, La(Py,)) < log Ny (€7, H;,,dpr)

3.23
SIOgN[](677HTL7dH)' ( )

Let a,, = (log n)%7b1n = (sn logp)fﬁ and by, = v/logn. By Lemma 3 of ?,

1 1
log N (€, Ho || - [loo) S 22 - log - - <log T log ;”) |
€ € 1n

~ bln

Now we use the similar argument to the proof of Theorem 6 of 7. Define

1) =030 () 1ol > 20,) 4 5300 (e] < 20,).

where ¢ is the density function of the standard normal distribution. H is an
envelop function for H,,. For some ¢ > 0, let g1,...,9r be a g-net for || - || oo,
li == (9: —0) VO and u; := (g9; + 0) A H. Then, the brackets [I;,u;] cover
H,. Let 0 = Ce2(anban) [log(1/€)]"2 for some constant C' > 0, then for
Dy, = 2a,by, [log(1/€)]% > 2ay,

1 x
w; — i) dp S Ui—lioo'Dn+/ T < )dx
/( Ydp S| I b, b1n¢ oy

ban D2
R @ Dnt g texp (‘8@)
<2y b2J . ecai
~ bln
<€

for some constant ¢ > 0 and any € < 1. The second inequality follows from the
Chernoff’s inequality. Thus,

log Njj (€, Hn, dr) < 1og Npj (€2, Hy, || - [11)
62 1 7%
<logN | C- log — s Hons ||+ Moo
anbop €

1’; : [<log1>2 + (10gn)2] 7

n €
IOgN[] (f,ﬁn) S 10gp+10gN[] (]\mslogp,gruLQ(Pno))

S

S

(=

and by (3.23),

e 1\?
< logp + (s, logp) ™2 [logn]* - [(log ) + (log n>2] '
€
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Then by Corollary A.1 in ?, we have

. . M, s,
Eeoﬂ?o < sup ”Gn(&%»n - 690,770)|00> ) log p
neH;,

¢ (sn)
1 Lnlln
< / 1/1ogNﬁ(e,£n)d~s
0

I Znlln
< / Viegp + (sp logp)ﬁ [log n)
0

A1

1
. <10g — + log n> de
€

1 1. ”Lan ]_
S 1nllnv/10g p + (snlog p) 32 [logn] =+ /0 log = de

1 7
2logp) 3¢ a1 ,
< Mysylogp- (gp) {VIogp + (s, log p) ™5 flogn] 1 }(3.21)
n
because [ log(1/e)de < [ e de < w!=¢" for any small ¢ > 0 and
0 < u < 1. (3.24) converges to zero as n — oo under the assumptions
5
(snlogp)® 2 (logp)s = o(n'=¢) and s&(logp)*t = o(n'~¢) for some con-
stant ¢ > 0. Thus, we have shown (3.21), and this completes the proof. |

Now, we prove Theorem ?? using the above results (Lemma 3, Lemma 4
and Lemma 5) and posterior convergence rate results (Theorem ??, Corollary
?? and Corollary ?7).

Proof (Proof of Theorem ?7) Let ©;, and H;, be defined as (3.20) and (3.17),
respectively. Define Ho = Ilg |n,0: and HH := II3 |y as the restricted
and renormalized priors on M, 607 and H}, respectively. Let I1(:|D,) be the
posterior distribution corresponding to the prior IT = ITo x ]qu.¢. We first prove
that

v (ﬁ(~|Dn),H(~|Dn)) =op,(1) and (3.25)
dy (11%(1D,), I=(1Dy) ) = op, (1), (3.26)

where IT°°(-|D,,) := IT°(:|D,,) |ar, 0. Note that for any measurable set A €
O X H,
II(AN[M,0; x H}:] | Dy)
II(M,0; x H | Dy)
II(A| D,) — H(AN [M,0;, x H}]°| Dy,)
(O X Hix | Dn) = H([Mn Oy, x Hy]¢ | Dn)
= 1I(A | Dy) + op,(1)

by Corollaries 7?7, ?? and Lemma 3, which implies (3.25). Define

n Koa ’le
Sn:{S:S|§S2, 160,5¢ [l < —iheta, /2 ng}, (3.27)

P(sn) n
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0% :={0s € RIS!: gs € M,0;} and Hg := /n(O% — 0y ) for some sequence
M, such that v/logp = o(M,,) and

sup sup |7”n(9a77)| = OPo(l)’
0€M, 01 neH:

where 7,(6,7) is defined in Lemma 5. Then,

IO | Dy) = Y s - dQs(0s)ddo (0se),
SES
1% — _ﬂ ~
dIT®(0 | Dy) = Y @ -0~ 7 dN, s(hs)ddo(0se),
SeSy

where @S = Qs |oz and Nms := N, s |, are the restricted and renormalized
distributions,

@S = QS(@E) Ws
Zs'esn ws Qs (O%) ’

~ Nn.s(H

wg = 5(Hs) -ws,

o ZS’eSn wg' Ny, s/ (Hg')

and hg = y/n(fs — o.s) € Hs. It is easy to show that

sup |1 — % =op,(1) and (3.28)
S€ES, Wg
sup dV (Nn’s,j\vfms) = OPO(].) (329)

SES,
hold by Theorem ?? and Lemma 4. Then, by Lemma 4.5 in ?,
dy (11(Dy), 1= (|Dy) )

< 2dy (@™, w) + Y wsdy (Np,s, Np.s)

Ses
~00 ws \T
S 2 Z wS 1_ == + Z ws - Sup dV(Nn,S7N7L,S)
SES, s 1 ses, S€5n
+ 4 Z ws,
SeSse

where w = (wg)ses and W™ = (WF)ses, - It implies that (3.26) holds by
(3.28), (3.29) and Theorem ?7.
Now we have (3.25) and (3.26), so it suffices to prove that

dy (1C1D,), 1% (1Dy) ) = op, (1). (3.30)
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Again by Lemma 4.5 in ?, if we show that
dy (W, w™>) = op,(1) and (3.31)
sup dv(Qs, Nn,s) = op, (1), (3.32)

S€eS,

where W = (Wg)ses,, , it implies the desired result, (3.30). Note that

dy (@, 0°) = Y |ig — 05|

SeS,

=3 -2 lay
SES,

=> 1—Qs(@s) 2 (1+op,(1))| - 0F
SeS, S

= ) [1-Qs(05)(1 +op,(1))] - 0
SeS,

Sssgg (1-Qs(03)) +op,(1) = op(1).

The third and fourth equality hold by Theorem ??, Corollary ?? and (3.28),
respectively. Thus, we have proved (3.31). For any measurable set B,

II(0s € B| Dy, n,Sp = S)
Jores 50 (La(@5,m) = Lu(00.)) - 95(05) /95 (00.5) dBs
 Jop exp (La(@s,m) = LalB,m) - 95(05) /95 (60.5) dos
Jnnes exp (Vs = bo0.5)" Gnno.s = 5 (05 = 00.5) Vono.5 (05 — Oo.5)) dbs
f@g exp (vVn(fs — 00,5)T Gnno,s — 2(0s — 00,5)T Viuno,s (0s — bo,5)) dbs
+op, (1)

by Lemma 5 and

gs(0s)

sup sup 95(9075)

S€S, 0s€0%

log = sup sup

S€ES, 0s€0%

A\ M,s, [logp
sup A-

SeS, ¢(sn) n
for some sequence M,, such that /log p = o(M,,) because we assume As,logp =

o(y/n). Then,
Qs(hs € B) = fY(hS € B| Dyn,n,Sy = S)dII(n | Dy, Sp = 5)

log exp (A[|6o,s — Osll1)

= o(1)

~

/ NnS u(n|Dn759:S)+OPo(1)

= B)+OP0( )

)

which implies supges, dV(QSa n,5) = 0p,(1). u
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4 Proof for Strong Model Selection Consistency

Proof (Proof of Theorem ??7) Define S,, and IT as in the proof of Theorem
3.5. Define the set S;, = {S € S, : S 2 Sp}, then it suffices to show that
II(Sy € S, | D,,) — 0 by (3.25). Note that

11(Sy = S | Dy, 1)
B Wp(\SD(\g\)il o exp (Ln(557 1) = Ln (6o, 77)) 9s(0s)dfs
Sses, TS (5) ™ Sos ex0 (La(@s.m) = Lu(8o,m)) g5(0s)dos

Then, by Lemma 5,

I?(Sb € 5¥L\1)n,ﬁ)
_ ZSES{1 7T;D(|SD(\g|)71 f@g exp (Ln(§S77’) - Ln(90777)> gS(GS)dQS
ESeSn m(|S]) (\gq)_l f@g exp (Ln(§S7 n) — Ly (6o, 77)) gs(0s)dbs

<> D 26,

w
ses: 5o
Sn/2

S$—S8o
< 3 nl vy (2
NS:SO+1 mp(50) \80/ \ \/2vy,
| X3, Xs, |12 1 ; 2
« Hg — Hg )i,
‘rg‘i); [ |XSTXS|1/2 exp 2”?70 ||( S So) 7%)0”2

for any 7 and some sequence &,, — 0, where

~

ws

x wp<|5|>(§|)_1 x

n
/ exp (\/77(93 —00,5)"Gp,s — 5(95 —00,5)" Vy,5(0s — 90,5)) 9s(0s)dOs.
6

Note that, by the condition on 7, and the definition of ¥2(s), m,(s)/m,(s0) <
A5sop=Aals=s0) and |XE X, |/1XEXs| < (n1p?(s,))151=%0 for any S € S,.
Thus, it suffices to prove that

*
S

1 .
Py, ( 5, (Hs = Hs,) Lo [13 > Keer(s = s0) log p, for some 5 € 8;)
70

=o(1) (4.33)

for some positive constant K, depending only on 7y such that Ay > K-
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The left hand side of (4.33) is bounded above by
Sn/2
P — 5o 7 2
2 ( . )P (ICHs = Hy) Lo 3 > 20 Kuca(s = s0) log p)
s=so+1

Sn/2
< Z P =50\ —t-20m, Keer(s—s0)(log p—vng K1) o By o et —Hs0) Lo 3
s — 5o ’

s=s0+1

for any ¢ > 0, where Hs = X5(X% Xs)~'XE. Note that £, (y; — 27 6p) is a
sub-Gaussian by assumption. By Lemma B.2 in ? (Hanson-Wright inequality),

E90 %etoH(Hssto)Ln,no”g < ec(|5|750)
for some positive constants C' and ¢y depending only on 7. Thus, if we choose

Kqel = (Upyto) !, the left hand side of (4.33) tends to zero as n — oo. [ |

5 Auxiliary Lemmas
We first introduce Lemma 6, which is used to prove lemmas 7, 8 and 9.

Lemma 6 Let B be a subset of R and for given € > 0, p and q be probability
densities on R such that d%(p,q) < €*. Suppose M} := I p(p/q)° < oo for
some 6 € (0,1). Then,

2 2
/ D (log p) < 20€2 [1 (1 V log %ﬂ .
B q 0 €

Proof The main strategy for the proof is similar to the proof of Theorem 5 in
7. Note that

2 2 2
/ P <log p) < / P <log p) —|—/ p <log p)
B q 0<p/q<K? q BN(p/q>K?) q

for any K > 0. Let K° = eV (Mj/e) > 1 and r = y/p/q — 1. Then,

2
/ P <log p) = / q(r +1)*(2log(r +1))?
0<p/q<K? q —1<r<K-1

2
1
:/ qr? <r+ ) (2log(r +1))2
—1<r<K—1,7#£0 r

§16/ qr?(log K)? < 16€*(log K)?
—1<r<K-1,r#0
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because (x + 1)/zlog(z + 1) is increasing for x > —1,z # 0 and [¢r? =
d%(p,q) < € by assumption. On the other hand,

P’ b’ (o5 2)?
pllog=] = pl= aY;
BN(p/a>K?) q Brp/e>ky) \4/)  (E)

</ ) (p>5 (21og K)?
- JBnp/e>K?) \4 K20

(log K)?
K2

< 4M?
because log z/z° is decreasing for z > e'/9. Thus, we have

2 2
p 2 2 5 (log K)

2
< 20€2 [(15 <1 V log M‘sﬂ
€

by the definition of K. [ ]

The following lemma gives a (uniform) convergence rate for the score function,
which plays an important role in proving the BvM theorem. This lemma is
used to prove lemmas 4 and 12.

Lemma 7 Let €, = Ketar/Sn logp/n and assume that (s, logp)? = o(n). For
any constant ¢ > 0, there exists a constant K. > 0 not depending on (n,p)

such that

. . 2 4_ 16
[ 5w (i) = fn ) dPoy () < K (e0)t~ (50 o)
neM;,

for any ng satisfying (D1)-(D5) and all sufficiently large n, where H, defined
at (3.17).
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Proof We first state some inequalities that we frequently use in the proof. For
any n € H; and any y € R,

)| = [tog { [ (2r0%) 2 exp (— (y = 2/ (20%) dF )}
)(salogp)7 ) ||

1 a 1
< o log(s, logp) + {y* + (log n) }(snlogp) =z

4
-

S 2
< ‘ log {(sn log p) 22 exp ( — (y~ + (logn)

< 2{2/2 + logn)é}(sn log p)®
f¢g —Z)dF( )
< §{|y|+ (logn)* }
< {Jyl + (logn)* } (s log p) 72,
- i(y) )
Bl =75 -0

2
Cnly) Unly }
< i E ;' n(W))?
g%’/az% B /%%(yﬁ)dﬁ@‘
+2{y* + (logn)~ }(Snlogw%
< % + %{y2 + (togn) 7 } +2{y” + (logn)* } (s, logp) =

< 5{y2 + (log n)% }(sn logp)%

and

L) ﬁ(y)ﬁ(y) EPYIRY,

Sy >(_z>dﬁ<z>+/2'y Aoy - 2)dF ()

/Iy— 2 bl — ()}

+{lyl +( logn)g}(snlogp 23{y + (logn)~ }(Snlogp)%
2
2

+2{|y| + (logn)* } (s, log p) 72 5{y + (logn)* } (s, log p)®
< 43{|y|* + (logn)~ }snlogp
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Assume that asmall ¢ > Oisgiven.Let A={y e R: |y| < 4 (log(l/en))%}
for some large constant C7 > 0. Note that

[ s (i) = ) a0

e neEH:
< [ s () Pt + [ (i) aPu).

It is easy to show that

/A sup (én(y)) S 4P, ()

cmeH;,

=

5/ Crllog 2% (y2+[10gn]%) e~ dy - (s, logp)
y>C1 og )T

boT 4

< (en)§c1 - (sn logp)%(logn)? < en

for some constant large C; > 0 by the assumption (s, logp)? = o(n). Since

. 2 .
[ () am < [ (™ + e dy
¢ y>C1(log =) 7

Sén

for some large constant C; > 0, we have

[ s (000 = i) 4P ) S

eneMy,
Thus, it suffices to prove

4
5

. . 2 _ 16
[ s (100 = 6, 0)) " 4Pa0) < Ko (ea)t~ (5 hog)™
AneEHS,

for some positive constants ¢ and K not depending on (n,p).
Define for any = and y € R,

dy(z,y) = €n<y+w; —ly(y) en0<y+x£ —l(v)

then we have that

/A sup (én(y) — (y))2 APy, (y)

neH,
S /Anself; (é"(y) = b (y) = (=, ?/)> : dPy, (y) (5.34)
* iz sup (2 dy(2,y))” dPyy (y)- (5.35)

€ A neEH,
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One can obtain the upper bound for (5.34) using

o) — o () — ()] < |y (1) — 2 ”i - My)‘
+ éﬁ (y) — 6770(3} + ) — eﬁo(y)’

< Jaf - { Iy ()| + 1o (92)1}
< ] - {y2 + (logn)é} (sn logp) =2
< |z|(sn logp) @z (log n)%

for any n € HY, y € A, small |z| and some |y — y1| V |y — y2| < |z| by the
Taylor expansion. Thus,

/ sup (E,,(y) — éno (y) — dn(:z:,y)>2 APy, (y) S 2% (sn logp)i [log n)
AneEHS

8
-

(5.36)
Note that [z dy(z,y)| < [6y(y + ) = Loy (y + )| + [€5(y) — Ly, (y)| and

/A sup (y(y + ) — Ly (y + ) dPy, ()

neM;,

_ su Z) — )2 z) - 10 (Y)
= [ s aty )~ o ) ol ) - By

S/A sup (£y(y + ) — Loy (y + 7)) mo(y + ) - 1917 dy

neH;,

provided that |z| is small, by condition (D5). To calculate the upper bound for
(5.35), we first find an upper bound for f,(y) := (£, (y)—n, (y))?n0(y) ony € A
and n € HZ. Let 0, := €, log(1/e€,) and B := {y eR: |y| < 2C(log(1/6,))7

so that A C B for all sufficiently large n. By the triangle inequality and the
definition of H},

)] = | 200 ) = s @) En(®) = by ())10(y) + (E0 ) = s () i0(v) |

S V) (lin(w) = b )] + [ty (w) = Lo ()] 1o @) (5:37)
S\ fay) (snlogp) ™ logn)%

and

()

< no(y){ (fn(y) — (y))2 180 (y) = Loy W) - 10y (y) — Loy ()]
. . . ) (5.38)
10 (y) = Log ] 1en (W) = Loy )] - 163 @) + (Lo (y) = Loy (1)) 1o (y)|}

8
-

< (5nlogp) ™ (logn)
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for any n € H; and y € R. By the Taylor expansion,

|fn(y+$)_fn(y)|
<l fa(y) (52 logp)#2 (logn)* + 22 (s, logp)*2 (logn)

3
T

RIES

< (s, logp) ™ [logn]* {|x F1(9) + 22 (su 1og p) % (logn)

for any y € R and small |z|. If we take |z| < C (s, logp)fﬁ (logn)~* ()
for some small constant C' > 0, it implies |f,(y + z) — f,(y)| < fy(y)/2 for
any y € R and small |z|. Therefore, for any fixed yo € A, we have f,(yo +

x) > fn(yo)/2 for any |z| < C (splogp)” za3 (logn)~ \/f,7 Yyo) for some small
constant C' > 0. Then,

[ iy = [ L Ry
B ly—yo|<C(sn logp) 292 [logn]f? In(vo)

3

(SIS

—__3

2 (snlogp)~*2 (logn)~ 7 (f5(0))* (5.39)

for any yg € A and n € H,. On the other hand,
L 4
1/n(y) < (logn)* exp{2(sy logp) 7 (logn)~ }
for any y € B and n € ‘H}, which implies
/ {nO(y Wy < | no(y) 2 (logn) ¥ exp{20(s, logp) 7 (log n) * }dy
B 77(1/) B
<1
by taking § = (s, logp)_%(log n)~7. Thus, by Lemma 6, we have
2 12

| )y 58 (s oz ) ognl* (5.40)

for any n € H%. By combining (5.39) and (5.40), it implies that
Folwo) S 6 (sn1ogp) 5 logn] (5.41)

for any yo € A and n € H}.

Next, we claim that if f,(y) < 04 (s, log p)™ [log n]% for some dy,dy and
ds > 0, then we have f,(y) < 5i+%d1{ (sn logp)gdﬁ% logn]3%+7 for any
y € A and n € H};. Suppose that f,(y) < 6% (s, log p)™ [logn]% on y € A
and n € H} for some positive constants dy,ds and ds. Due to (5.41), there
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exist constants dy = 4/3,d> = 7/(3az) and d3 = 32/(37) satisfying f,(y) <
541 (s, log p)™ [log ). Note that for any small constant ¢ > 0,

120(y) — Lno 1)1/ 10(y)

S Jal (1)l + Vs (w2)]) /1o 9) (5.42)
ey +2) = by +|;|>| +1a®) = by W) s

da d3
+ ——— 0 (splogp)? [logn|?
x

2 4 e?lylr dy
< [o] (sn logp) % [log

d3
2

2 4 1 L4 do
< ol (snTog )% log ) + 5.~ (s lomp) # flogn)

for some |y — y1| V |y — y2| < |x|, thus

da 2
4 T

j j F-2¢ ++= 4
10 (y) — Loy (W) |V 10(y) S 60 (snlogp)® a2 [logn] ™

da d
4 F-

d
ony € Aand n € Hf, by taking |z| = 57?17% (sn logp) ~as [log n]
Then, by (5.37),

Rl

1

; 34— P
Fa @) S 307 (snlogp) #4732 [log ] H+ 2

for any y € A and n € H},, which implies that

Faly +2) 2 S F0)

; . —3dy+2¢ —3da— L —3ds—2
orany y € A,n € M, || < C36n (snlogp) 7“2 [logn| =357~ f,(y)
and for some small constant C3 > 0, by the first-order Taylor expansion. Thus,
similar to (5.39),

_3 1
[ Faw)y 2 (o) 57147 (s logp) 7 o]0,
B
for any yo € A,n € H} and small ¢ > 0. Again by (5.40),

34, — .
Foy) S 503N (5, log p) RT3 [log ] §95TF (5.44)

for any y € A,n € H} and small ¢ > 0.
Note that the upper bound (5.44) is obtained from the assumption SUP,cys

fn(y) < 6% (s, log p)d2 [logn]9. Thus, by applying the claim repeatedly, one

8__ 1
can check that sup, ¢y f(y) < 0n % (sn logp)% logn]3+ for any y € A and
a given small constant ¢ > 0.
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Therefore, we finally obtain the following upper bound

/A sup (fn(y) —ly, (y))2 APy, (y)

neMs

8
-

S a? - (snlogp) 7 [logn]
1 ’ 7!
=5 [ sup (Ly(y+x) — Loy (y+2))° no(y + ) - " dy

x AneEHS,
55 (50 log p) ™ [logn] 5
{L'2

8
-

+

<22 (snlogp)™ [logn]

N

2
by (5.36). By taking |z| = 5 2 (sn 10gp)_% logn]sr,

. . 2 4_¢ 16 48
[ s (b0 = 6 0)) AP (0) < KebE ™ (s o)™ flogn]
AneEHS
4o do
< Kcefy (sn log p) 5oz

for some constant K. > 0 not depending on (n,p). |

This lemma gives slightly faster convergence rate, under stronger condition,
compared with Lemma 7, and is used to prove the misspecified LAN (Lemma
5). Although Lemma 8 seems similar to Lemma 7, we stated them separately
to avoid assuming redundant conditions for Lemma 7.

Lemma 8 Let €, = Ketan/Sn logp/n. For any constant ¢ > 0, there exists a
constant K. > 0 not depending on (n,p) such that

. 2 a_

[ s (1)~ 6, )) 4P 0) < Ko ()t
neH;,

for any no satisfying (D1)-(D5) and all sufficiently large n, provided that

(sn logp)H% = o(n'=%), where H}, defined at (3.17).

Proof Assume that a small ¢ > 0 is given. Let ¢,, := EE_C (sn log p)% [log n]%,
A ={ye A:n(y) 2 ¢2} and B := {y € B:no(y) = ¢2}, where A and B
are defined in Lemma 7. Note that

/(A/)c sup (fn(y))QdPno(y) §/ sup (én(y)>2dPn0(y)

neH;, Ac neHS,

+/A sup (én(y))2dpno(y)

N{y:mo(y)Sez} neHy,
: / (y* + 1)dy
A

RN

< en + 92 (snlogp) 2 [logn)

AN

<ent npi (Sn logp)% [log n]

4_
<er C,

~
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provided that (s, log p)1+% = o(n). Similarly, it is easy to check that

. 2
[ sw (6) dpy ) S e
(AN)e neHs,
Hence, it suffices to show that
. . 2 4_¢
[ s (i) = ) dP () < Ko (e)?

rmeH;,

for some positive constants ¢ and K.
Note that similar to (5.42),

En(y) = Loy ()70 (y)
Sz {100 @)l + 140 (y2) 1} Vo (y) + TW(Z/) — Lo (W) |V 0(y) (5.45)

’

< x| (sn logp) o2 s [logn]g + ﬁéf’ —¢ (sn logp) [logn}

for some |y — y1| V |y — y2| < |z| on y € A" and n € H¥ by (5.43). Then, by
taking appropriate |z|, we have

. . 1_ _23
10(y) = oo (1) [V 10(y) S 65 (50 logp) ™ [log n]

< (snlogp)™2

5
>

(5.46)

ony € A" and n € H, because we assume that (s, logp) e = o(n'=¢). Sup-

Z EOn |\/7707 (sn logp and SUPpepx n(y) S

541 (s, log p)™ [log n}df' on y € B’ for some positive constants K, dy, ds and ds.
Note that from the proof of Lemma 7 and the definition of B’,

770(2/) < exp ( Pn >
n(y) ~ n0(y)

for any y € B’ and n € H}, then, similar to (5.40), it is easy to show that

pose that sup, ¢y

/ fn()dy < 67, (5.47)
o

by Lemma 6. Applying (5.42),

16y (y W)IVo@) < 8 (snlogp) T+

for any y € A" and n € H%. Then by (5.47) and the similar arguments to the
proof of Lemma 7, we have

w‘x

[log n] & (5.48)

Fay) < 0075 (5, log p) ¥+ E [log n] 342
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for any y € A’ and n € H}. By a recursion, one can check that dy,ds and dj
converge to 8/5 — ¢, 2K /5 and 0, respectively. Thus, by (5.48), we have

1 (1) = oo ()| 0() < 67 (50 logp) P (5.49)

for any y € A’ and n € H}, and it implies that

(1) = on () |/ 10 (W) S 65 (snlogp) ™2t [logn) *
< (splogp) 10X

En(y) -
ébn(y)|\/m < (sn logp)%K from the assumption sup, ¢y« 10, (y) — E()n(y)|
x\/m < (sn 1ogp)K on y € A’. Suppose that a small constant ¢’ > 0 is
given, then we have sup,cy- |€n(y)| < (sn logp)gl on y € B’ by repeatedly

for any y € A" and n € H;, by (5.45). Thus, we obtain sup, cq-

~

applying the above arguments. Finally, by (5.49),

in(y) — b)) o) S 657
( )

for some given constant ¢ > 0, any y € A’ and n € HZ%. Therefore,

/A, et (é”(y) = bng (y))2 AP, (y) < K¢ ()¢

for some positive constants ¢ and K not depending on (n,p). |

Lemma 9 If (s, logp)H% = o(n'=%) for some constant ¢ > 0, we have

sup [ (64(6) = E0)) dPoy (o) = o)

neH;,
for any no satisfying (D1)-(D5), where HY defined at (3.17).
Proof Note that
[ (6 = ) a2 0) = = [ () = 0 ) (0) — (0Dl
~ [(afw) = i) = oy ()l
follows from the integration by parts. By Lemma 6, (5.43) and (5.46), one

can show that the absolute value of the above equality is bounded above by

6 _ 33
€n C(sn log p) ™=z for some constant ¢ > 0, up to some constant not depending
on 7, which implies the desired result. |

The following lemma is used to prove Lemma 10.
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Lemma 10 Let s, be a sequence of positive integers. Define

On1:={0 €RP: 59 < sp, |10 — Oo|l1 <1}

and f g, = (0 — Ho)ngm(H —0p). If we assume (s, logp)H_‘% =o(n'=¢) for
some constant ¢ > 0, then for any small constant ' > 0,

)

n(10gp)* + (s, logp)* (logp)* \* ’
< <5 (log p)® + (snlogp) (ogp)> (s log p)° (5.50)

an@,é,n

1
Eq sup sup —
0,10 B
0,0€0,, 1 nEH, vn

1

n

for any ng satisfying (D1)-(D5) and all sufficiently large n, where H}, defined
at (3.17).

Proof Without loss of generality, we assume that 6y = 0. For a given (' > 0,
define

Fn = {f@,@,n = (sn logp)7< (logp)_l : f@,é,n : evé € On1,1E IH;} - (5.51)
Then for any E?,@,n € Fn,

| fo.5.0(%.9)]

< sup  sup (270)0,(y — 270)| (snlogp) ™ (logp) ™! =1 Fu(z,y).
0,0€0,, 1 N€H;,

ﬁn is an envelop function of .7?“ such that Ego’n0ﬁ2(l’i7m) < 1 for any i =
1,...,n because

E907770 ﬁr% (.73, Y)

- / sup  sup (270)410,(y — 279) Pno(y)dy - (s, logp) "> (logp)~2
9,06@11,1 "IGH:L

. — _2 !
S/ sup sup |4y (y — 270)Pno(y)dy - (s, logp) ™
A" 6eB, 1 NEH,

+/ sup sup |8y (y — 270)Pro(y)dy - (snlogp) ™
(A%)¢ o, , neHs,

Y . —_ Y
< (sulogp) ™% + /A sup sup [fy(y = a0y - (5, Tog )~
€ 0eO,,1 NEH]

+ / sup  sup |€n(y —270)*no(y)dy - (s 1ogp)_2<
An{ymo(y)Sei} 00,1 neH,

_ ! i _ 7 _ ’
< (50 logp) 2 + (snlogp)®2 @2 (sulogp) > < (snlogp) >



38 Kyoungjae Lee et al.

provided that (s, log p)H% = o(n), where A, A’ and ¢,, are defined in the

proof of Lemma 8. Thus, ||F,||2 = n~? S Eog e F2 (24, Y3) S (sn logp)fzcl.
We will use Corollary A.1 in ?, which implies

1
Eq,, sup sup ——
o (0,§e@n,1 nem; V1 )
(EN — (s logp)cl
< \/log N1* (e, Fp,)de - ~——>~— logp. (5.52)
/0 (1 vn

Now, we calculate Nﬁ(e,fn) defined at (5.52). For 69,07 € ©,,1 and n; €
Hr, 7 =1,2, write

ane,é,n

forgvm — fo202m, = 1+ f2+ [3,

where .}?1 = ]7917§1’m - f"vgz’gl’m,fz = .}?92’@1’,71 - }ng’gzﬁm and ﬁ), = f,‘;z’gz’m -
~ - 2

fo2,52 , - It is easy to show | f1(z,y)| < [0' —0%[|1- (y* + 1) (s, logp) =2 llog n]
and | fa(z,y)| < 101 =621 (Jy[* + 1) (sn logp)% [log n] ¥ v/Iog p. Then, we have

EQO,UO (Sup sup ‘f@l,gl,nl (.’E,Y) - f92,§2,n2 ($7Y)|2>
01,02 n1,m2
6 12 ~
< sup |01 — 623 (sn logp) =2 [logn] = logp + Eg, (SHP sup |f3(fCaY)2> :
01,02 01,02 n1,m2
To deal with j?;,, define

§Kn = {én g, kM€ ’H;‘L}

and Hy := SUP,)ep(x MAXk=0,1 SUP|y|<K,, |€,§k) (y)| for some K, > 0. Then,
Theorem 2.7.1 of 7, which implies for every € > 0,

log N (e) := log N (e, G, , || - |oc)

~ 1
< K, -Hg, - -
€

qlo

A

3 3 s 1
Ky, - K5, (s logp) 2 (logn)~ —

€
By the definition of the covering number, there is a partition {H': 1 < <
N(e)} of H} such that

/ sup  sup |y, (y — 270) — by (y — 270)2dP, ()
ly|<K,—M+/Togp 0€O, 1 n1,m2EH!

g/ 2dP,,(y) < €.
ly| <Kn—M+/logp
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Let K, = C(log(1/€))Y/™ 4 C(logn)'/™ + M+/Tog p for some constant C' > 0,
then

/ sup sup [fy(y — 270)2dPy, (y)

ly|>K,—M+/Togp 0€O, 1 nEH},

5/ yre W dy - (s, log p)7s [logn]
ly|>K,—M+/logp

8

< e ik (sn logp)% logn]t < €.

Thus, we have

/ sup  sup | fa(w,y)PdPy(y) S €
02,02€0,,,1 m,m2€H!

for some constant C' > 0 and any 1 <1 < N(e).
By the above arguments,

log Nfj(e, F) 5 log N(€) +log N (e (sn log p) 7 [logn]~* [logp} %, |- |1 )

6
>

3 1 1
5 K’i (Sn logp) a32 (1Og n) =+ Sp Ing + Sn IOg -
€ €

5
=

3 1
S et (sulogp)™ (logn)? (logp)? + s logp + s log .

Hence, by (5.52), we get the inequality (5.50). [ |

The following lemma is used to prove Lemma 5.

Lemma 11 (Misspecified LAN: version 2) Let s, be a positive integer
sequence and €, be a sequence such that €, — 0. Define O, ., ={0 € O : sy <
Sny ||0790H1 < en} and fn(9777) = Ln(ovn)an(am770)7}/5(9*00)71@7%00,774’
n(0—00)TV,, (0 —00)/2. If we assume that (s, logp)'Te2 = o(n*=<) for some
constant ¢ > 0, then

Eeo,n0< sup - sup If‘n(9,n)|>

0€On, c,, NEHS,
<ne - pn+eny/logp- sup || X(0—60)|3, (5.53)

€On, ey,

for any ng satisfying (D1)-(D5) and all sufficiently large n, where M}, defined
at (3.17) and

1
3 2
sn(logp)® + (s, logp)?2 (logp)* s
Pn ::( ( ) ( ” )2 ( ) (snlogp)c

for a given constant ¢’ > 0.
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Proof By the Taylor expansion, where 6(t) := 6y + t(6 — 6y),
Ln(0,m) = Ln(0(1),1)

0
= Ln(90777) + aLn(e(t)’ n)’t:O +

182

| ﬁLn(Q(t),n)(l — t)dt.

Since Eg, ,0,. = 0 for every 1) by (D4), we have that

0 .
&Ln(e(t)a U)‘tzo = \/ﬁ(e - GO)TG’HgGOﬂ]
and
o -
S Ln(0(6),1) = (0 — 00) ade) (0 — o)
Define
1 1 .
Anl(ﬂ, 77) = n/o (]. — t)ﬁGn(G — 90) &9@7,}(9 — 00)dt,

1
AnQ(gan) = \/0 (1 7t)

Z [(0 - GO)TIEGOﬂ?O {ée(t)ﬂ?(xia Y;) — geam(xia YZ)} (60— 90)} dt,

i=1

1< ..
Z(a — 00)" Egy.noLog.n (i, Yi) (0 — 60),

An3(97 77) = 5
=1

then, it is easy to show that

1 82
@Ln(e(t), (1 —t)dt = An1(0,n) + Ana(6,m) + Ans(6,7).
0
Since
1 - 10— 6oll7 . (6—60)" 5 (6 —6o)

— G (0 —0)T¢ 0—0y) = G, ;

gm0 0o @ =00 = TG G g [ O gy
we have

Eoq,m0 sup sup
0€O,, ., NEHE,

Amw,n)]) Snek-pn

by (5.50) in Lemma 10, provided that (s, logp)H% = o(n'~=¢) for some ¢ > 0.
Since An3(0,m) = —n/2- (0 — 00)TV,,,(0 — 0y), if we only need to show that

sup sup
0€Oy c,, NEH,

Ana(0,m)| S en/logp - sup |X(0 = 0o) 3,

€On ey,
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where 0(t) := 09 + t(0 — 6p) for 0 < t < 1. To show the above inequality, it
suffices to prove that

(0 = 00)" {Eounalow,n (@, Vi) = Bouunnlogn(@is Y } (0 = o) (5.54)
S el (0 = 00)"* V/og pll6 — 6ol
for any ¢ = 1,...,n. Note that (5.54) is bounded above by
27 (0= 00)1 [Eay my (£(Yi = 27 0(2) = &, (¥ = 2T00) )|
S |27 (0= 60)1* V/1og p[|0 — Ooll1 - [Eay o € (Yi — 2] 6(11))]
for some constant 0 < ¢; < ¢. Also note that
B, (£0(Y —aT0(t1) = T (Y — 27 0(11)))]

'/ —aTO(t)) — Ty — 27O(0) oy — mTeo)dy‘
'/ byly — 2T0(t1)) — £y (y — xTG(tl)) oy — mToo)dy‘

2

g[ﬂ@@ ewwm@@}

oly =270 \* moly—aT60) o
) [/ (770(2/ _1'T90)> Uo(y—xTH(tl))TIO(y x eo)dy]

The above equality follows from the integration by parts, and the last in-
equality follows from the Hoélder’s inequality. The last term is of order O(1)
by Lemma 9. Since |Eg,n, £, (Y — 2760(t1))| < 1, it completes the proof for
(5.53). |

1
2

Finally, the following lemma is used to prove Lemma 4.

Lemma 12 Suppose that (s, logp)H% = o(n'=%) holds for some constant
¢ >0, then

Eo,m0 (nsel%) IIGnéeO,nlloo> S logp

for any o satisfying (D1)-(D5), where H}, defined at (3.17).

Proof Without loss of generality, we assume that 6y = 0. Define
Fn = {eféao,n (logp)"2:1<j<p ne HZ},

where e; is the jth unit vector in RP. Then,

sup |Gl lloc = sup Gn f|\/logp.

neH;,
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We first show that Fy,(z,y) := sup, ey 1€y (y) = Lo ()| 4 [ ()| is an envelop
function of F,, and Eg, ,, F2(z;,Y;) < 1 for any i = 1,...,n. Note that for any
feF,and x = (21,...,2,)7,

(@)l = [eF g n(,)| (logp)

= [z o) 0gp)

< sup Ifn(y) - éno (y)l + |éno (y)|
neM;,

By Lemma 7, we have Eg, ,,0 F2(z;,Y;) S 1if (sp logp)H% = O(n'~¢) for
some ¢ > 0. Then, we have

1Fnlln
|oo> 5/ \/1og Nfi(€, Fr) de \/log p
0

1Pl
5/ Vel +logpde/logp < logp,
0

Eeomo (Sup HGRZQO,W
net;,

where the second inequality follows from Corollary 2.7.4 of 7. |
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