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Introduction 

In this work, we rely on automatization for efficiently collecting information from the 

Internet. This is a fast and cheap method for constructing large bibliometrics datasets that are 

much less error prone when compared to manual entering.  

From Academic Tree (http://www.academictree.org), we obtained names, institutions, 

studies, advisors, and collaborators of 38,293 profiles spanning Neurotree,  (see Table 1). For 

each Academic Tree researcher, we downloaded the entire Scopus profile 

(http://www.scopus.com). For each article in Scopus, we obtained title, journal, co-authors, year 

of publication, and citing articles. For each citing article, we obtained title, journal, co-authors, 

and year of publication. A summary of the data obtained from Scopus is shown in Table 2. 

We downloaded funding information from the NIH ExPORTER Data Catalog 

(http://exporter.nih.gov/ExPORTER_Catalog.aspx) for the years 1995 to 2010, and we matched 

PI names to Academic Tree profiles. We imputed missing yearly costs (funding) in years 1995 to 

1999 from the average yearly funding of R01 grants in other years (US$ .24 million). A 

summary of the grant information is shown in Table 3. 

The complete set of features is described in Table 4. 

Table 1 Summary of data available for each tree 

Subset Number of profiles 

Neurotree 34,873 

Fly tree 2,032 

Evolution 1,388 
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Table 2 Summary of data from Scopus 

Scopus Quantity 

Articles 2,050,686 

Citations 5,903,507 

Authors  2,729,915 

 

Table 3 Some summary of Neurotree, Scopus, and NIH grant funding 

Data property Number 

 NIH/neurotree matches 3,866 

Grant cycles matched  6,876 

 

Table 4 Features 

Feature number Definition 
1 Number of articles in top journals, 

where top journals are defined as 

Nature, Science, Nature 

Neuroscience, PNAS, and 

Neuron. 
2 Number of articles in ‘theoretical’ 

journals (Neural computation, 

network: computation in neural 

systems, Frontiers in 

computational neuroscience, 

journal of computational 

neuroscience, journal of neural 

engineering, neuroinformatics, 

PLOS computational biology) 
3 Number of years in a postdoctoral 

position. 
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Feature number Definition 
4 Number of years in graduate 

school 
5 Number of articles with a adviser 

is a co-author 
6 Number of R-type grants 
7 Total current yearly cost 
8 Current h-index divided by career 

length (also known as m-index) 
9 Mean h-index divided by career 

length of PhD supervisor 
10 Proportion of articles as last 

author 
11 Proportion of articles as first 

author 
12 Total number of citations 
13 Total number of articles 
14 Average number of coauthors per 

article 
15 Total number of journals 
16 Average number of citations per 

article 
17 Career length defined as number 

of year since publishing first 

article 
18 Current h-index 

Elastic net regularization for linear regression 

We use linear regression with elastic net regularization1 to study effect sizes and improve 

generalization. In particular, we use the extremely-efficient glmnet package 2 within the 
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statistical software system R 3. 

Ordinary least square linear regression seeks to construct a relationship between a set of 

dependent variables  x1,…, xm  and an independent variable y through the estimation of 

coefficients  !0,!1,…,!m . Additionally, since we are analyzing a time series, we can think of a 

linear regression as 

yt = !0 + !i xit
i=1

m

" + et  , 

where et  is a noise term normally distributed with zero mean and a time-independent standard 

deviation ! . In fact, this regression is time invariant and therefore the index t can be informally 

dropped. By creating a vector with an additional “bias” term 
 
x = 1 x1 ! xm!
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, we can represent the regression as  

y = ! Tx + e . 

However, when the number of features is large, features are possibly collinear, and 

generalization of results needs to be improved, it is possible to adaptively reduce the complexity 

of the model by forcing some coefficients to be small or zero. This is what elastic net 

regularization tries to achieve by minimizing the following objective function 

min
β

1
2n yi − β

Txi( )2
i=1
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, λ ≥ 0, 0 <α ≤1  

where m is the number of data points,!  controls the complexity of the model — higher values 

imply a simpler model — and !  controls how much we expect features to be collinear (!  close 

to 0) or irrelevant (!  close to 1). In all our analyses, we set !  to .2 and find the best !  by 

cross-validation. 

Because elastic net regularized regression does not conform easily to the normality 

assumptions of ordinary least square regression, we cannot rely on the central limit theorem to 

obtain 95% confidence intervals. We instead obtain confidence intervals using 10,000 bootstrap 

samples. Finally, to produce the simplified regression of Box 1 in the main text, we computed 

the best model by backward stepwise selection from the full model 4. We stop the back search 
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when five variables were left. The five-variable model had a significantly higher R2 than the 

four, three, and two variable models. 
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