
Supplementary Material for “Long γ-ray bursts and core-
collapse supernovae have different environments”

1 Supplementary Methods

Astrometry and the Morphology Independent Technique: If GRBs are associated with massive

stars, then we might expect their locations to be correlatedwith the blue light of their hosts – such

a correlation has long been hypothesized for SNe, and as we show in the associated paper this is

a good representation of their distribution. Traditionally, studying the correlation with the light of

the galaxy has been done by determining the offset of the object from the center, or centroid of the

galaxy’s light and comparing this with the half-light radius of the galaxy. High redshift galaxies,

however, frequently have an irregular morphology. As a result the centroid of a galaxy’s light may

be an area of relatively low surface brightness. Thus if the GRBs are strictly correlated with the

light, the standard technique would overpredict the numberof bursts at the galaxy centroid, and

underpredict those on outlying brighter regions. Our technique avoids this bias.

In general, if one were to use the light of the galaxy as a surrogate probability distribution

for the location of the objects, one would want to take a very high resolution image of the host

and convolve the image with the error distribution of a givenobject’s astrometry. However, in

cases where we rely entirely onHSTastrometry, we can typically determine the position of the

object to a small fraction of a pixel or about∼ 0.′′01, but our bestHSTimages only have a FWHM

of 0.′′07. In many cases then, the true light distribution of the host has already been convolved
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by a distribution wider than the astrometric error distribution. No further convolution is required.

Where the astrometry relies on early ground-based images, the error distribution is sometimes

larger than the FWHM of the image and a further convolution must be done to obtain an accurate

representation of the probability distribution based on the light. We have limited ourselves to

objects with error distributions with a FWHM of≤ 0.′′15, which is comparable to or less than the

scale size of the very smallest galaxies. This is also, coincidentally, roughly the resolution of the

original HubbleDeep Field. In cases where the error of the position on the host is larger than this

cutoff, we use only the GRB host magnitude and size for comparison with SN sample (all SNe in

this sample haveHSTastrometry).

In our implementation the host galaxies are detected using the software package SExtractor1.

A Gaussian filter with width three pixels was applied to the “drizzled”2 HSTimages. A S/N cutoff

of one with a minimum detection region of five pixels was used.In cases where the error in the

astromety was larger than the PSF, the extracted image of thegalaxy was then convolved with

a Gaussian to bring the resolution of the image to the error ofthe astrometry. The pixels of the

extracted (and in some cases convolved) host were next sorted from lowest to highest in surface

brightness. We then locate the pixel on which the GRB or SN occurred and ascertain the fraction

of the total light in the galaxy contained in pixels of surface brightness lower than or equal to the

pixel containing the GRB or SN.

To insure that there is minimal contamination of the galaxy image by light from the transient

source, where possible we have used images of the SN hosts taken before the outburst. This is
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clearly not possible for the GRB hosts. However, for all GRBsand the remaining SNe we have

used images taken at a sufficiently late time that any afterglow or SN is either below the noise or

less than 10% of the remaining surface brightness of the host. To do this estimation for the GRBs,

in cases where a redshift is known we have used a conservativeestimate of the early time decay

plus an additional component equal to one of the brightest SNassociated with a GRB, SN 1998bw.

Where no redshift was available, we have used a conservativeextrapolation of early time decay.

In nearly all cases this condition was easily met. In those cases where it was not, the object was

not used for fractional light determination. We chose the cutoff value of 10% of the remaining

surface brightness as it was found that an error of this magnitude generally had little effect on the

fractional location of the burst. In particular, the readermay note that the GRBs differ from the

predicted light distribution because they are highly bunched at the very brightest pixels. However

it is near the median pixel, not the brightest pixel, where a small change in brightness may make a

relatively larger change in the fractional position on the host.

We cannot detect all of the light of the hosts in their fainterouter regions. However, the

missing fraction of light is generally small and, to the extent it is noticeable, will bias our result

towards finding objects on pixels lower in fractional light than they actually are (and thus in the

opposite sense of the surprising result found for the locations of GRBs). We have nonetheless

attempted to check for any bias by adding noise to our images –and thus causing SExtractor to

lose even more of the outer regions of the galaxies. We have increased the noise in the images

by a magnitude (and thus a pixel must be a magnitude brighter to be detected). Although placing

additional noise in the images leads to the non-detection ofthe three faintest host galaxies (GRBs
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980326, 990510 and 000301C), the significance of our result regarding the positions of the objects

remained unaffected.

In addition we tested changing the SExtractor significance cut by a magnitude on an early

subset of the data. No significant change was found in our results. Furthermore, it should be noted

that the effective cut strongly varies across the sample dueto (1 + z)4 cosmological dimming

– particularly for the GRB sample which has a wide redshift range (though again note that we

restrict this range when comparing the GRB and SN host magnitudes and sizes). The effect of

cosmological dimming is again in the opposite sense of the results reported here. Finally, as an

additional check, we have divided the GRB sample into low andhigh redshift ranges and find no

significant difference in the position of the GRB on the host between the two subsets.

Host Parameters: The host galaxy sizes and magnitudes were also determined using the SEx-

tractor software. Host galaxy sizes reported are the radiusestimated by Sextractor to contain 80%

of the host light. The experience of the GOODS group has shownthis to be a robust estimator;

however, use of the Sextractor measurement of the semi-major axis results in similarly incompat-

ible GRB and SNe size distributions. Host magnitudes correspond to “mag-auto”, determined by

Sextractor, which is the program’s best estimate of the entire light of the host.

Pixelization Bias: In assigning a GRB or SN a fractional position on the light of its host, we

determine the fraction of light in all pixels fainter than orequal to the pixel that contains the

object. This assigns all of the light in the pixel containingthe object as if all the light in that pixel

had a surface brightness lower than the point directly underthe object. However, we do not know
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the true surface brightness distribution of light interiorto this pixel. Therefore this method assigns

some light in the pixel which truly lies above that underlying the object to the total light equal to or

less than that under the object. Thus there is a bias equal to some fraction of the light in the pixel

containing the object. As there are typically hundreds of pixels in a host, this bias is usually, but

not always, only a fraction of a percent of the host light.

Although a complete correction of this bias would require knowledge of the light distribution

in the pixel containing the object (or perhaps an attempt at deconvolution on a finer pixel grid), as

a first estimate one might assume that typically one-half thelight of the pixel lay below the surface

brightness at the location of the object and one-half above this surface brightness.

Using the half-light estimate instead of the entire pixel, however, does not noticeably change

any of our results. The K-S significance is determined by the maximum vertical separation be-

tween the sample histogram and a model or a comparison samplehistogram. In this case that

maximum distance is effectively determined by the locationof GRB 021211. Applying the above

correction lowers the estimated position of the GRB on the light of this host from the 75.8 to the

75.0 percentile. This is not large enough to cause GRB 021211to change its position in relation

to the SN hosts, nor do any of the GRB hosts above 021211 now fall below it. Thus our conclu-

sion that the SN and GRB hosts populations are not drawn from the same distribution is entirely

unaffected. While the comparison of the GRB sample with the analytical model of objects trac-

ing light changes slightly, the probability that the GRBs dofollow the light of their hosts remains

insignificant.

5



2 Supplementary Notes

Additional Comment on Sample Bias: LGRB redshifts are generally obtained through spec-

troscopy. It is rare that a LGRB or its host have sufficient colors to allow the determination of a

photometric redshift. Only a fraction of LGRB spectroscopic redshifts have been obtained through

absorption lines imposed upon the OT light by the host. Nearly half of redshifts have been obtained

by emission lines seen from the host. This means that the sample of LGRBs with known redshifts

is biased towards bright hosts. Indeed we know of three GRBs (9803263, 0204104, and 0307235),

which have apparent supernova “bumps” in their light curvesindicating a redshift∼< 1, but which

have no measured redshift. At the same time only one potential core-collapse supernova (cc SN)

in the GOODs sample does not have a spectroscopic or photometric redshift. Thus our sample

almost certainly understates the true differences in magnitude and size between the LGRB and cc

SN hosts.

For consistency, we have usedHST optical magnitudes where possible. The bands used

typically correspond to the far blue or ultraviolet in the host rest frame. This is entirely appropriate

for the study of the location of the explosions on their hosts, as these positions are expected to be

correlated with star-formation and thus blue or ultraviolet light; however, redder observing bands

(for which the data are less complete for the GRB hosts) wouldbetter correlate with host mass.

Given the difference in host morphology observed between the GRB and SN hosts, it is likely that

a comparison in redder bands would accentuate the already strong difference in host magnitudes

seen between these two samples.
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Finally, LGRBs usually (though not always) begin their lives with optical afterglows that are

dramatically brighter than their hosts. (Furthermore, LGRBs often have x-ray or radio afterglows

which can be used to identify a host.) SNe often do not dominate their host, and thus one might

worry that some SNe may have been missed by the GOODS group, particularly in the cores of

galaxies, where subtraction errors are greatest, and the contrast with the host the poorest. To test

this possibility we have compared the brightness of the cc SNe with the subtraction errors at the

cores of their hosts (images at each epoch are subtracted from a template in order to discover the

SNe). We find that for 15 of the 16 objects, the cc SNe were clearly brighter at observed peak than

the largest errors on their hosts and would have been easily detected. Only in the case of 2002ke

were the errors in three central pixels large enough to compromise the discovery of the SN. We

therefore estimate that less than∼ 10% of central SNe were missed by the GOODS search.

A referee noted that the SN hosts tend more toward face-on than edge-on and this could be

due to a failure to detect SNe in edge on spirals potentially because of a large line-of-sight through

a dusty galaxy. Indeed, there may be such a selection effect for SNe (this should be less of a

problem for GRBs, primarily because GRBs can also be detected in the radio and X-ray, but also

because GRBs may be able to destroy dust along significant path-lengths6, 7). However, as the

effect of orientation is likely to be more pronounced in spirals than in irregulars, this effect would

tend to suppress the number of spirals relative to irregulars in the SN sample. Thus such a loss

of SNe would probably tend to reduce the number of spirals in the GOODS sample, and the true

differences between the SN and GRB hosts could be even largerthan reported here.
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3 Supplementary Tables

In the tables below we present further information on the observations used to derive the results in

the accompanying paper.

In Tables 1-3 we provide details of the GRB observations. We present theHST instrument

used, the observed host magnitude, the redshift of the GRB (where known) the derived host ab-

solute magnitude (including an estimated correction for foreground Galactic extinction), a radius

estimated to enclose 80% of the host light, the fractional light of the host contained in pixels

fainter than or equal to that at the position of the GRB, and our estimated positional uncertainty

in the GRB. Magnitudes for all objects were obtained fromHST imaging except in the case of

GRBs 9804258, 0002109, 00091110, 02081911, and 03120312 where ground based magnitudes are

used. All STIS observations are through the “CLEAR” filter; all ACS observations are with the

F606W filter; all WFPC2 observations are with the F555W filterexcept for GRBs 040924 and

041106 which were observed with the F775W filter, and GRB 000131 for which the F814W filter

was used. With the exceptions of GRBs 04092413 and 04100614, references for all GRB redshifts

shown here can be found in Ref. 15. Only GRBs with relative astrometry better than0.′′15 have

their positional errors or fractional light levels shown. Fractional light levels are left blank in sev-

eral other cases where our estimates suggested that the GRB OT might still contaminate the light

of the host as described above. Host magnitudes were adjusted for foreground Galactic extinction

based on the correction scheme given in Ref. 16.

In Table 4 we present the observed properties of the GOODS SNEhosts. The redshifts for
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these objects are as determined in Ref. 17. The size, magnitude, and position determinations shown

here were performed in an identical manner to those for the GRB hosts.

In Table 5 we present a short table of observations in cases where a ground-based image

was used to determine the position of a GRB on a host. In addition to these observations, two

positions were obtained from the literature – GRB 971214 from Ref. 18 and GRB 980613 from

Ref. 19. Both ground-based and earlyHSTimages were aligned to late-timeHSTimages using fits

for the positions of objects which were unresolved or only marginally resolved in theHSTimages.

When ground-based images were aligned to anHSTimage a fit for scale, rotation and translation

was done. WhenHSTimages were aligned, the fit was for rotation and translationonly. TheHST

images used in this program are all available from theHSTpublic archive: http://archive.stsci.edu.
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Table 1 GRB Host Galaxies: 1997-1999

GRB INST Mag(AB) z MV r80(kpc) Flight Perr (”)

970228 STIS 25.88 0.685 -17.26 3.2 - 0.025

970508 STIS 25.19 0.84 -17.92 1.48 100 0.007

970828 WFPC2 24.43 0.958 -18.93 2.8 - -

971214 STIS 26.35 3.42 -20.49 2.36 53.5 0.150

980326 STIS 29.73 1 -13.85 - 100 0.033

980329 STIS 27.25 - - - 79.40 0.04

980425 GROUND 15.19 0.0085 -17.59 - - -

980519 STIS 28.09 - - - 84.83 0.05

980613 STIS 25.33 1.10 -18.48 3.75 41.6 0.075

980703 STIS 22.91 0.97 -20.55 2.42 55.7 0.035

981226 STIS 25.04 - - - - -

990123 STIS 24.41 1.60 -20.07 5.01 11.3 0.005

990506 STIS 25.53 1.30 -18.56 1.53 - -

990510 STIS 28.20 1.62 -16.75 1.75 79.4 0.006

990705 STIS 22.78 0.86 -20.47 9.38 - 0.028

990712 STIS 22.45 0.43 -19.12 2.25 97.1 0.012

991208 STIS 24.60 0.71 -18.05 1.16 94.0 0.073

991216 STIS 26.79 1.02 -18.40 2.25 82.5 0.030

10



Table 2 GRB Host Galaxies: 2000-2001

GRB INST Mag(AB) z MV r80(kpc) Flight Perr (”)

000131 WFPC2 24.86 4.50 -21.50 5.93 49.1 0.100

000210 GROUND 24.22 0.85 -18.83 - - -

000301 STIS 28.90 2.03 -16.07 1.00 51.2 0.006

000418 STIS 24.15 1.12 -19.55 1.70 45.4 0.150

000911 GROUND - 1.06 -18.95 - - -

000926 WFPC2 24.18 2.04 -20.73 10.25 100 0.013

010222 WFPC2 25.61 1.47 -18.62 2.87 92.7 0.013

010921 WFPC2 22.58 0.45 -19.41 2.76 43.9 0.015

011030 STIS 25.75 - - - - -

011121 WFPC2 23.23 0.36 -19.41 5.89 51.1 0.016

011211 STIS 25.97 2.12 -19.05 2.69 95.3 0.006
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Table 3 GRB Host Galaxies: 2002-2004

GRB INST Mag(AB) z MV r80(kpc) Flight Perr (”)

020305 STIS 25.23 - - - 91.1 0.006

020322 STIS 26.50 - - - 28.2 0.090

020331 STIS 25.86 - - - 100 0.007

020405 WFPC2 21.59 0.69 -21.11 11.96 58.7 0.010

020410 STIS 27.26 - - - 97.3 0.006

020427 STIS 24.61 - - - - -

020813 ACS 24.46 1.25 -19.69 2.13 88.0 0.008

020819 GROUND 19.48 0.41 -21.88 - - -

020903 ACS 21.63 0.25 -18.98 1.43 95.8 0.006

021004 ACS 24.63 2.33 -20.63 1.81 100 0.006

021211 ACS 25.43 1.02 -18.05 1.63 75.8 0.007

030115 ACS 25.58 2.5 - - 86.3 0.060

030323 ACS 27.28 3.37 -18.53 1.86 86.2 0.060

030329 ACS 23.07 0.17 -16.37 1.03 99.1 0.006

031203 GROUND - 0.105 -20.73 - - -

040924 ACS 23.93 0.859 -19.21 3.234 - 0.013

041006 ACS 25.15 0.716 -17.53 5.19 - 0.008
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Table 4 cc SNe in the GOODS survey

SNe Mag(AB) z MV r80(kpc) Flight

2002fz 22.34 0.84 -20.64 11.70 59.2

2002hq 20.93 0.67 -21.54 16.60 37.1

2002hs 23.25 0.90 -19.87 12.75 9.3

2002kb 20.54 0.58 -21.61 15.82 83.7

2002ke 21.05 0.58 -21.10 18.17 44.2

2002kl 22.54 0.41 -18.82 5.91 13.6

2003N 24.61 0.43 -17.09 3.73 69.1

2003ba 19.92 0.29 -20.65 8.181 81.6

2003bb 21.53 0.95 -21.72 20.37 17.8

2003bc 21.77 0.51 -20.09 4.450 19.9

2003dx 23.26 0.46 -18.36 2.167 44.9

2003dz 25.67 0.48 -16.18 2.47 61.0

2003ea 24.01 0.89 -19.42 4.38 56.7

2003er 21.24 0.63 -19.70 7.16 8.4

2003et 22.98 0.83 -19.79 4.97 85.9

2003ew 21.97 0.66 -20.10 15.21 71.4
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Table 5 Ground-based Astrometric Observations

GRB Tel Inst Date

980326 Keck/LRIS 1998-03-27

980329 Calar Alto 3.5m 1998-03-29

980519 INT/WFC 1998-05-20

980703 NTT/EMMI 1998-07-04

990705 NTT/SOFI 1999-07-05

991208 NOT/StanCam 1999-12-12

991216 VLT/FORS 1999-12-18

000131 VLT/FORS 2002-02-04

020322 PAL-60 2002-03-22

030115 VLT/ISAAC 2003-01-17
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4 Supplementary Figures

In Supplementary Figures 1–3 we showHSTimages of all of the host galaxies used in the position

study. Each galaxy is shown as a pair of images. The left-handimage of each pair shows the pixels

which were determined by Sextractor to lie above the signal-to-noise cut. The right-hand image

shows theHSTimage with a small green circle centered on the position of the GRB.
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