
Strong atom–field coupling for

Bose–Einstein condensates in an

optical cavity on a chip

Yves Colombe1,∗, Tilo Steinmetz1,2,∗, Guilhem Dubois1,
Felix Linke1,†, David Hunger2 & Jakob Reichel1

1Laboratoire Kastler Brossel, ENS /UPMC – Paris 6 /CNRS, 24 rue Lhomond, 75005 Paris, France.
2Max-Planck-Institut für Quantenoptik / LMU, Schellingstr. 4, 80799 München, Germany.
†Present address: BMW Group,Abt. Instrumentierung und Displays, Knorrstr. 147, 80788 München,Germany.
*These authors contributed equally to this work.

Supplementary Notes

1 Conditions for collective interaction

This section summarizes some facts about collective interaction of N two-level atoms with a single
mode of the radiation field in the strong-coupling regime.

Let us first consider N atoms at fixed positions, all identically coupled to a single mode of the
radiation field [S1] with a coupling strength g1. We call |gi〉 and |ei〉 the ground and excited internal
states of the ith atom. If initially all atoms are in the ground state |Ψ0〉 = |g . . . g〉 and then the system
is weakly excited, the first excited state must reflect the symmetry of the situation and therefore is
[S2]

|Ψ1〉 =
1√
N

(|e, g . . . g〉+ |g, e, g . . . g〉+ . . . + |g . . . g, e〉) . (1)

The coupling term in the Hamiltonian, setting ~ = 1, is

V̂ = g1

(∑
i

â|ei〉〈gi|

)
+ h.c. , (2)

where â annihilates one photon in the mode. The matrix element gN between the atomic ground
state with one photon in the field mode, |1〉⊗ |Ψ0〉, and the atomic first excited state with no photon,
|0〉 ⊗ |Ψ1〉, is therefore

gN = 〈0| ⊗ 〈Ψ1| V̂ |Ψ0〉 ⊗ |1〉 =
√

Ng1 . (3)

The atomic ensemble thus behaves as a single “superatom”, with a collective enhancement
√

N in the
coupling strength.

No assumption about the particle statistics was made to obtain this result. However identical
coupling was assumed, which in a real experiment is strictly true only for a Bose–Einstein condensate
(BEC), where all atoms share the same spatial wavefunction. In the following we show that even for
nonidentical couplings the atomic ensemble interacting with the cavity field can be described as a
two-level system, and that the

√
N scaling of the collective coupling strength still holds. The main

result is that gN =
√

Ng1 with g 2
1 =

∫ ρ(r)
N |g1(r)|2dr, where g1(r) is the position-dependent single-

atom coupling strength to the field mode and ρ(r) is the atomic density distribution. Additionally,
the reasoning below does not make the approximation of point-like atoms, so that it applies to laser-
cooled atoms and BECs for which the size of the atomic wavefunction can easily exceed the optical
wavelength (note that the demonstration would be much simpler using the point-like approximation).
The case of a single atom with quantized motion was considered by Vernooy and Kimble [S3], who
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found complex dynamics with collapses and revivals of the Rabi oscillations between the ground and
excited states of the atom.

The complete (neglecting damping) N atoms–field Hamiltonian in a cavity can be written

Ĥ = ωC â†â + ωA

N∑
i=1

σ̂†i σ̂i︸ ︷︷ ︸bH0

+
N∑

i=1

(
g1(r̂i) âσ̂†i + g∗1(r̂i) â†σ̂i

)
︸ ︷︷ ︸bV

, (4)

where σ̂i is the atomic lowering operator σ̂i = |gi〉〈ei| and â the cavity photon destruction operator.
The kinetic energy of the atoms is neglected, which is valid as long as the broad line condition
Erec � ~ Γ applies, meaning that a few recoil kicks will not drive the atoms out of resonance (see for
example [S4]).

Suppose that the atom–cavity compound system is initially is the stationary state |G〉 ≡ |0; g . . . g;Φ〉:
no photon is in the cavity, all the atoms are in the internal ground state |g〉 and their positions are
described by a N -particle wavefunction |Φ〉. When the cavity is pumped, the system can undergo
transitions to the first excited state |E1〉 ≡ |1; g . . . g;Φ〉. This level is coupled via V̂ to a second
excited state |E2〉 defined by:

|E2〉 = V̂ |E1〉 = |0〉 ⊗
∑

i

|g . . . e︸︷︷︸
ithterm

. . . g〉 ⊗ g1(r̂i)|Φ〉 (5)

up to a normalization constant. To confirm that the atomic ensemble interacting with the cavity field
behaves like a two-level system, one has to show that the action of V̂ on |E2〉 is mainly a coupling to
|E1〉. Therefore one has to compute

V̂ |E2〉 = |1; g . . . g〉 ⊗
∑

i

|g1(r̂i)|2|Φ〉 . (6)

When the two-particle position correlations are small, as in a classical gas or in a Bose–Einstein
condensate, one can show that the final position wavefunction differs only slightly from the initial one:

∑
i

|g1(r̂i)|2|Φ〉 =

(∑
i

〈
|g1(r̂i)|2

〉
Φ

)(
|Φ〉+O(

1√
N

)
)

= g2
N |Φ〉+O(

√
N) , (7)

< · >Φ standing for the quantum average (expectation value) in the state |Φ〉. This would not be true
for a quantum state presenting strong correlations, such as a Schrödinger cat, for which the position
of the atoms would become highly entangled with the internal state.

Finally, the coupling V̂ can be rewritten as the sum of a two-level coupling V̂JC , and a many-level
coupling term V̂ ′ of smaller magnitude, which corresponds to cloud heating and spreading on a longer
timescale due to interaction with the cavity field. The two-level coupling can be cast in the familiar
Jaynes–Cummings form V̂JC = gN (âσ̂† + â†σ̂) with an effective, scalar coupling strength gN scaling
as
√

N , as in the case of identically coupled point-like atoms (3):

g2
N =

N∑
i=1

〈
|g1(r̂i)|2

〉
Φ

= N
〈
|g1(r̂i)|2

〉
Φ,i

=
∫
〈ρ̂(r)〉Φ |g1(r)|2dr , (8)

and hence

gN =
√

Ng1 , with g 2
1 =

∫
ρ(r)
N

|g1(r)|2dr . (9)
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2 Multilevel coupling model

In our experiments, 87Rb atoms are trapped in the |F = 2〉 hyperfine level of the 5S1/2 ground state.
We note ∆L = ωL−ωA the detuning of the probe beam relative to the 5S1/2 |F = 2〉 → 5P3/2 |F ′ = 3〉
line of the D2 transition. When |∆L| exceeds the ∼ 500 MHz hyperfine splitting of the 5P3/2 excited
state, one can treat the 5S1/2 |F = 2〉 → 5P3/2 |F ′ = 1, 2, 3〉 transitions as a whole, which allows a
two-level approach for the atoms. However, at the very large atoms–cavity coupling strengths reached
in the experiment, additional atomic levels may play a role in the coupled system. In particular, when
the coupling gN is of the order of the hyperfine splitting of the 5S1/2 ground state ∆HFS = (EF=2 −
EF=1)/~ ≈ 2π × 6.8 GHz, the transitions |F = 1〉 → 5P3/2 and |F = 2〉 → |upper dressed state〉 may
become simultaneously resonant with the probe field. As we will see, this leads to new features in the
spectrum provided that the |F = 1〉 state is populated, even by a small fraction of atoms.
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Supplementary figure 1: Outline of the first-excited states involved in the calculation of the cavity
transmission spectrum. Left and right column states are “atom-like” (they contain one excited atom),
central column states are “cavity-like” (they contain one photon). The vertical axis is the bare energy,
in units of the ground state hyperfine splitting ∆HFS. The initial state |Ψ0〉 is in the centre. Horizontal
and oblique arrows indicate the coupling strengths. The dashed lines separate the k subspaces; we
restrict the graph to k = −1, 0, 1 for clarity. The cavity is tuned on the 5S1/2 |F = 2〉 → 5P3/2

transition, as in the experiment of Fig. 3a (main text).

A simple model taking into account this new transition is a four-level atom, with ground states∣∣g1,2

〉
≡ 5S1/2 |F = 1, 2〉 of energies −~∆HFS and 0, and excited states |e1,2〉 of energy ~ωA. The

cavity coupling can be developed on this basis (in the rotating wave approximation):

V̂1 = D̂ · Ê = ~g1 â
(
|e1〉〈g2|+ α|e1〉〈g1|+ β|e2〉〈g1|

)
+ h.c. (10)

in which the parameters α, β . 1 depend on the polarization of the cavity field. A generic state for
the N -atoms + cavity system is described by the number of atoms in each state and the number
of photons in the cavity: |Ψ〉 =

∣∣Ng1
;Ng2

;Ne1 ;Ne2 ;n
〉
. The initial state is |N1;N2; 0; 0; 0〉, where it

is hypothesized that a relatively small number of atoms N1 � N2 are in the |F = 1〉 state. When
the cavity is weakly pumped with the probe laser, the system is excited to the “cavity-like” state
|Ψ0〉 ≡ |N1;N2; 0; 0; 1〉. This level is coupled to many other states with the same number of excitations
M = Ne1 + Ne2 + n = 1, which we write |N1 − k;N2 + k −Ne;Ne1 ;Ne2 ;n〉, with Ne = Ne1 + Ne2 and
k an integer (Supplementary figure 1). For growing |k| values, these levels of energy ∼ k × ~∆HFS

get progressively out of resonance with |Ψ0〉. We thus restrict |k| to small values, k = −3 . . . 3, and
diagonalize the coupling in this 3× 7 - dimensional subspace. Each eigenenergy E is related to a peak
in the frequency spectrum at a detuning δ ≡ (E − EΨ0)/~ = ωL − ωC, with a weight ∼ | 〈Ψ|Ψ0〉 |2.

When the cavity is tuned on the 5S1/2 |F = 2〉 → 5P3/2 transition (∆C = 0), the model predicts
an anticrossing in the positive part of the spectrum (δ > 0) when the double resonance condition

3

doi: 10.1038/nature06331                                                                                                                                                   SUPPLEMENTARY INFORMATION

www.nature.com/nature 3



Supplementary figure 2: Eigenenergies computed using the simple multilevel model with ∆C = 0,
α = 0, β = 1, N1/N2 = 0.25%, superimposed on the experimental data of Fig. 3a (main text).

g1

√
N2 = ∆HFS is fulfilled. It is located at δ = ∆HFS and has a frequency gap ∼ βg1

√
N1. We ad-

just the parameters of the model to reproduce the frequency gap ∼ 500 MHz of the experimental data
(Fig. 3a in the main text). Since the polarization of the cavity field is not precisely known, β is unknown
and set to 1 for simplicity. The only magnetically trapped state of 5S1/2 |F = 1〉 is |F = 1,mF = −1〉,
hence we assume that |F = 1〉 atoms should be this Zeeman substate. As α ∝ 〈g2|V̂ 2

1 |g1〉, α is expected
to be zero since there is no 2-photon transition between states |F = 2,mF = 2〉 and |F = 1,mF = −1〉.
A finite value for α would lead to additional anticrossings in the spectrum, located at detunings
δ = ±∆HFS/2, which we do not observe in this experiment. The remaining parameter is the |F = 1〉
population fraction N1/N2 — supposed constant regardless of the total number of atoms — which we
fit to the data, finding N1/N2 = 0.25%. The corresponding resonance curves are shown in Supple-
mentary figure 2. The anticrossing predicted by the model does not occur at the detuning at which it
is observed experimentally (δexp ≈ 8.5 GHz). Note also that the asymptotes in the experimental spec-
trum clearly have nonzero slope, whereas the model predicts horizontal asymptotes. In a more refined
model we have taken into account the optical pumping of the atoms arising during the excitation of
the coupled system, but found that this effect remains negligible.

An anticrossing related to the hyperfine structure of the ground state is observed by Brennecke et
al. [S5]. The authors develop a model similar to ours, but including also the complete structure of
the D2 transition, the presence of two light polarizations in the cavity, and a “Lamb-shift” effect due
to higher order transverse modes of the cavity. However, as we have checked, none of these effects
can account for the position of the anticrossing or the non-zero slope of the asymptotes present in our
experimental data. In particular, the first higher order transverse mode of our FFP1 cavity lies some
750 GHz above the TEM00 mode, which is too far detuned to affect the measured spectrum.

Further theoretical and experimental investigations are required to explain the origin and charac-
teristics of the observed anticrossing.
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3 Heating rate model

In the experiments shown in Fig. 4 (main text), a magnetically trapped BEC interacts with the cavity
field for tint = 10ms, with ∆L = ∆C = 0. The heating of the trapped cloud is measured using
absorption imaging after a time-of-flight (TOF) expansion tTOF = 2.8 ms.

We calculate the heating rate of the trapped cloud with a momentum diffusion model. Fischer
et al. [S6] derive the diffusion for an untrapped atomic cloud in a cavity in the low saturation limit.
In the resonant case (∆L = ∆C = 0), the momentum diffusion coefficient for the atom i, defined by
d
dt (
〈
p 2

i

〉
− 〈pi〉2) ≡ 2D i

p , is

D i
p =

n(~k)2g1(ri)2

γ
+

n~2(∇g1(ri))2

γ
, (11)

where n is the intracavity photon number in the presence of the N atoms and g1(ri) is the coupling
strength for the atom i, g1(ri) = g0 cos(kxi) exp(−r2

⊥i/w2).
The first term in (11) can be rewritten (~k)2Γi

sp/2, where Γi
sp is the rate of spontaneous emission

of the atom i. This part of the diffusion process is equivalent to a random walk with step length
~k, at a rate Γi

sp, and corresponds to the emission of spontaneous photons in random, isotropically
distributed directions. The second term is associated with the randomness of the direction of the
absorbed photons. Neglecting the radial contribution in ∇g1, the two terms have the same average
value as soon as the cloud size is large compared to λ/2. This is the case in the experiments of Fig. 4
(main text), where the calculated diameter of the condensate along the cavity axis is 2Rx = 6.6 µm.

Expressing n in terms of the number of photons nres in the empty cavity with the same probe
beam intensity, we write the average diffusion as a function of the collective cooperativity CN :

Dp =
2nres(~k)2κ

N

2CN

(1 + 2CN )2
. (12)

The diffusion is maximal for CN = 0.5. Given the small radial extension of the BEC (2σy,z =
490 nm � w = 3.9 µm), we neglect the variation of the coupling in the transverse directions over
the atomic sample: g1(x, r⊥i) ≡ g1(x, r⊥). This yields a straightforward radial dependence for CN ,
CN = 1

2NC0 exp(−2 r2
⊥/w2) where C0 = g2

0/2κγ is the maximum single-atom cooperativity. Replacing
N , C0 and w with their values in the experiment, the diffusion peaks are expected to occur when the
condensate is positioned about 10 µm off-axis, which is consistent with our measurements.

After the interaction time tint, the probe field is shut off and the atoms are brought to the centre
of the mode in ttransp = 22 ms. This provides identical TOF conditions regardless of the initial radial
position |za| ≡ r⊥ of the cloud, and allows the sample to thermalize. We calculate the cloud r.m.s.
sizes σx,y,z after TOF assuming that the energy imparted by the heating is equally redistributed
among the 6 degrees of freedom of the trap. This leads to

σ2
x ≈ σ2

x,ref +
1
3

Dp tint t2TOF

M2
Rb

, (13)

and to similar expressions for the y and z directions. MRb is the 87Rb mass and σx,ref is the cloud r.m.s.
size after TOF when the probe beam is kept off. In (13) we neglect the contribution of the increase in
the trapped cloud size, which is a fair approximation. Supplementary figure 3 compares the calculated
σx with the experimental data; σx,ref is set to its measured value σx,ref ≈ 7 µm. The calculated diffusion
coefficient D peak

p = nres(~k)2κ/2N at the two maxima of heating leads to an almost isotropic cloud
after TOF expansion — as is observed experimentally — with σpeak = vrec tTOF (nres κ tint/6N)1/2,
where vrec is the recoil velocity. The numerical value σpeak = 28 µm overestimates the experimental
value σpeak

exp = 18µm . There are at least two reasonable explanations for that: first, the measured value
for the atom number N can be inaccurate up to a factor 2, yielding a factor

√
2 for the cloud final size,

consistent with the other experiments which also suggest that the atom number is underestimated;
second, as we estimate below, the number of trapped atoms changes during the interaction with the
cavity due to optical pumping, thereby changing the value of CN . This second effect may also explain
why the diffusion peaks are broader than expected.
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Supplementary figure 3: Calculated r.m.s. cloud size along x after tTOF = 2.8 ms, compared to
the experimental data shown in Fig. 4 (main text).

The model gives the number of spontaneous emissions per atom at the heating peaks n peak
sp =

nres κ tint/2N ≈ 8, and allows to check the validity of the low-saturation assumption: P peak
exc =

Γ peak
sp /2γ = 2 × 10−5 � 1. Taking the direction x of the magnetic field B0 at the bottom of the

trap as quantization axis, a linear polarization in the cavity is an equal-weight combination of σ+ and
σ− polarizations. A crude calculation based on branching ratios shows that about 15% of the spon-
taneous emission events drive the magnetically trapped |F = 2,mF = 2〉 atoms into the untrapped
states |F = 1, 2,mF = 0〉 (free falling) and |F = 1,mF = 1〉 (expelled from the trap). This means that
a fraction & 0.858 = 27% of the atoms stay in the initial state after interaction, in rough agreement
with the measurements (the number of detected atoms drops by about 50% at the heating peaks).
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