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1 Spectral analysis of Swift/XRT data

We use the xspec v11.3.2 X-ray spectral fitting package to fit both a power law and a

blackbody model to the XRT outburst data. In both models we allow for excess neutral

hydrogen absorption (NH) above the Galactic value along the line of sight to NGC2770,

NH,Gal = 1.7 × 1020 cm−2. The best-fit power law model (χ2 = 7.5 for 17 degrees of

freedom; probability, P = 0.98) has a photon index, Γ = 2.3± 0.3 (or, Fν ∝ ν−1.3±0.3) and

NH = 6.9+1.8
−1.5 × 1021 cm−2. The best-fit blackbody model is described by kT = 0.71± 0.08

keV and NH = 1.3+1.0
−0.9 ×1021 cm−2. However, this model provides a much poorer fit to the

data (χ2 = 26.0 for 17 degrees of freedom; probability, P = 0.074). We therefore adopt

the power law model as the best description of the data. The resulting count rate to flux

conversion is 1 counts s−1 = 5× 10−11 erg cm−2 s−1. The outburst undergoes a significant

hard-to-soft spectral evolution as indicated by the ratio of counts in the 0.3− 2 keV band

and 2−10 keV band. The hardness ratio decreases from 1.35±0.15 during the peak of the

flare to 0.25± 0.10 about 400 s later. In the context of the power law model this spectral

softening corresponds to a change from Γ = 1.70 ± 0.25 to 3.20 ± 0.35 during the same

time interval.

2 High resolution optical spectroscopy

We obtained the spectrum with the High Resolution Echelle Spectrometer (HIRES)

mounted on the Keck I 10-m telescope beginning at Jan 17.46 UT. A total of four 1800-s

exposures were obtained with a spectral resolution, R = 48, 000, and a slit width of 0.86

arcsec. The data reach a signal-to-noise ratio of 18 per pixel. We reduced the data with the

MAKEE reduction package. We are interested in the Na I D and K I absorption features

since they are sensitive to the gas column density, and hence extinction, along the line of

the sight to the SN.

The continuum-normalized spectra are plotted against the velocity relative to the rest-

frame of NGC2770 (Figure 2). The positive velocity for the Na I and K I features indicates
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2 Soderberg et al.

a rotation velocity at the position of the SN of 150 km s−1. While the Na I lines are

saturated, the weaker K I lines reveal two distinct unsaturated components with equivalent

widths of EW1 = 0.08 Å and EW2 = 0.09 Å. This indicates45 a best value for the differential

extinction of E(B − V ) ≈ 0.7 mag, with a plausible range that accounts for the scatter in

the relation of 0.4 < E(B−V ) < 0.8 mag. With the standard Milky Way extinction curve

this corresponds46 to a V -band extinction of 1.4 < AV < 2.8 mag. This range is consistent

with the estimate of the extinction based on the hydrogen column density inferred from

the X-ray analysis.

3 Rejecting a Relativistic Origin for XRO080109

We investigate the possibility that XRO080109 is the result of a relativistic outflow similar

to that in GRBs. In this context the emission is non-thermal synchrotron radiation. The

outburst flux density is 7.5× 102 µJy at 0.3 keV. Simultaneously, we find 3σ limits on the

flux density in the UBV bands (∼ 3 eV) of Fν < 9.0 × 102 µJy, indicating that the peak

of the synchrotron spectrum must be located between the UV and X-ray bands. In the

standard synchrotron model this requires the frequencies corresponding to electrons with

the minimum and cooling Lorentz factors to obey νm ≈ νc ≈ 3 × 1016 Hz, while the peak

of the spectrum is Fν,p ≈ 3 mJy.

The inferred values of νm and νc allow us to constrain47 the outflow parameters and

thus to check for consistency with the hypothesis of relativistic expansion. The relevant

parameters are the bulk Lorentz factor (γ), the magnetic field (B), and the shock radius

(Rsh). From the value of νc we find γB3
≈ 8.3 × 103, and since γ > 1 we conclude that

B < 20 G. In addition, using νm we find ǫ2
eγ

3B ≈ 3 × 104; here ǫe is the fraction of post-

shock energy in the relativistic electrons. Along with the constraint on B, we infer γ > 25.

Indeed, for a typical ǫe = 0.1 the values are B ≈ 4.5 G and γ ≈ 90. Finally, the peak flux

is given by Fν,p ≈ 5.4γBA∗(Rsh/1010 cm) µJy, where A∗ is the wind density parameter and

a value of unity corresponds to a mass loss rate, Ṁ = 10−5 M⊙ yr−1, with a velocity of

vw = 103 km s−1. Comparing to the measured flux we infer Rsh ≈ 1.4×1010 cm. However,

such a small radius is inconsistent with the high Lorentz factor and ∼ 102 s duration of the

outburst since in relativistic expansion the expected radius is Rsh ≈ 4γ2ct ≈ 1017 cm. We
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thus conclude that the relativistic outflow hypothesis is inconsistent with the data. This

rules out recent claims48 that neglected to consider the UV/optical non-detections.

We can also reject a relativistic origin for the outburst based on the later radio ob-

servations. The radio data require sub-relativistic ejecta (β ≈ 0.25), which however may

have been relativistic initially and rapidly decelerated. In this scenario the shock dynam-

ics are given the Sedov-Taylor self-similar solution. For an initially relativistic outflow

with EK ∼ EX ≈ 2 × 1046 erg in a wind circumstellar medium (CSM) [ρ(r) ∝ r−2] with

A∗ ≈ 1, we find that the outflow will become non-relativistic at t ≈ 400 s. Subsequently,

the outflow will evolve according to49 R ∝ t2/3, B ∝ t−1, and γm ∝ t−2/3.

The observed radio spectrum peaks at the synchrotron self-absorption frequency, νa,

and the spectrum at higher frequencies is described by Fν ∝ ν−(p−1)/2 with p = 3.2. From

this we infer that in the Sedov-Taylor regime the spectrum evolves as Fν,a ∝ t−1.4 and

νa ∝ t−1.3. This leads to Fν ∝ t1.8 for ν < νa and Fν ∝ t−2.8 for ν > νa. These scalings

are clearly inconsistent with the observed νa ∝ t−1.1 and Fν,a ∝ t−0.4, as well as the light

curve rise and decay, Fν ∝ t1.4 and Fν ∝ t−1.2, respectively. The failure of this model is

tied to the underlying assumption of a single velocity component (relevant for a GRB-like

relativistic outflow).

4 SYNOW Fits of the Optical spectra

We compare our Gemini spectroscopic observations of SN2008D with synthetic spectra

made with the supernova spectrum synthesis code SYNOW50 (Figure 3). SYNOW∗ is

a highly parametrized spectral synthesis code used primarily for empirical analysis of

SN spectra. The code is based on simple assumptions: spherical symmetry, homologous

expansion, a sharp photosphere that emits a blackbody spectrum, and line formation

by resonance scattering treated in the Sobolev approximation. Its main function is to

make line identifications and estimate the velocity at the photosphere (Figure 4) and the

velocity interval within which each ion is detected. These quantities provide constraints

on the composition structure of the ejecta.

∗http://www.nhn.ou.edu/∼parrent/synow.html
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Here we fit the pre-maximum spectra with power law and Gaussian optical depth pro-

files for photospheric velocity and high velocity (HV) features, respectively. The synthetic

and observed spectra are normalized51 before fitting. The results obtained show that

SN2008D follows the standard line identification scheme for a typical He-rich Type Ibc

supernova.

From 14 to 3 days before maximum light, blue shifted He I and Fe II absorption features

indicate photospheric velocities ranging from 17,000 down to 11,500 km s−1, respectively

(Figure 3). We note that fits were not possible for the first few epochs due to the nearly

featureless spectra with contribution from the cooling envelope component. The spectra

also contain O I and it is suspected that if the spectrum extended further into UV and

infrared wavelength regions that absorption of Ca II would also be seen. We take the

interpretation that the absorption feature near 6150 Å is due to either a HV component

of H I or Si II (see Refs. 52 and 53 for a full discussion of the discrepancy of this feature).

5 Supernova Optical Emission Models

To quantitatively extract the parameters of SN2008D we fit the bolometric light curve with

a model of supernova emission powered by the radioactive decay of 56Ni and 56Ni+56Co,

combined with blackbody emission from the cooling stellar envelope (Figure 5). The

56Ni+56Co model assumes perfect trapping of the photons generated by the 56Co decay,

but a comparison to other SNe indicates that some diffusion is likely to occur. The observed

evolution is therefore expected to be bounded by the two models, consistent with our latest

optical measurements (Figure 5).

The SN models make the following assumptions61: homologous expansion, spherical

symmetry, no nickel mixing, a constant optical opacity, optically thick ejecta, and 56Ni (or

56Ni+56Co) as the only energy source. With these assumptions the luminosity is given by:

L(t) = MNi e
−x2

×

[

(ǫNi − ǫCo)
∫ x

0
2zez2−2xydz + ǫCo

∫ x

0
2zez2−2xy+2zsdz

]

, where x ≡ t/τm,

y ≡ τm/2τNi, s ≡ τm(τCo − τNi)/2τCoτNi, ǫNi = 3.9 × 1010 erg s−1 g−1, ǫCo = 6.8 × 109

erg s−1 g−1, τNi = 8.8 d, and τCo = 111.3 d. In the 56Ni model only the first term on

the right hand side is used, with a prefactor of ǫNi. The light curve timescale is given by

τm = 0.36(κ2M3
ej/c

2EK)1/4, where κ ≈ 0.05 is the optical opacity. Thus, the peak of the
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light curve is determined by MNi, while the time of the peak (and hence the width of the

light curve) is determined by the ratio of Mej to EK .

In the 56Ni model we find that the best fit model has MNi ≈ 0.1 M⊙ and τm ≈ 23 d.

In the 56Ni+56Co model we find MNi ≈ 0.05 M⊙ and τm ≈ 15 d. To break the degen-

eracy between EK and Mej we use the photospheric velocity, vph = (10EK/3Mej)
1/2(1 −

9.3EKt2/κM2
ej), which is measured at maximum light (t ≈ 20 d) to be 11, 500 km s−1.

From the measured τm and using κ = 0.05 we find M
3/4
ej E

−1/4
K ≈ 3 × 1012 (56Ni+56Co

model) or ≈ 4 × 1012 (56Ni model). With these values the second term in the equation

for vph provides a ∼< 5% correction, so EK/Mej ≈ 4.0 × 1017 erg g−1. For self-consistency

we use the inferred values of Mej and EK as the input parameters to the envelope cooling

model. We find that we need to correct these values by about 30% to provide a satisfactory

combined fit. This is remarkable agreement considering the various simplifications that

enter both models.

6 The X-ray light curve of XRO080109/SN 2008D

We obtained X-ray observations with the ACIS-S instrument on-board the Chandra X-ray

Observatory on Jan 19.86 UT (10.3 days after the outburst). In the 17.9 ks observation

we detect a weak point source coincident with the radio position of XRO080109. The

data were reduced and the source counts were extracted in the standard manner using the

Chandra threads. A total of 10 counts were found in a 4.9 arcsec aperture, corresponding

to a count rate of 5.6 × 10−4 counts s−1. The low count rate precludes a constrained

spectral fit, and we therefore adopt the parameters of the X-ray outburst (Figure 1).

We fit the normalization of the spectrum using xspec v11.3.2 and determine an un-

absorbed flux, FX = (1.2 ± 0.4) × 10−14 erg cm−2 s−1 (0.3 − 10 keV). The high angular

resolution of the image reveals three sources near the position of XRO080109, which are

located within the 18 arcsec Point Spread Function (PSF) of XRT and therefore contam-

inate the late XRT observations (Figure 6). To remove this contamination we use the

positions, count rates, and spectra of the three sources in xspec to determine their equiv-

alent XRT count rates. Using the software package Sherpa, the XRT PSF profiles for

the three sources were calculated at the XRT count rates and CXO positions. We then
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measure the combined contamination at the position of XRO080109, and use a small (4

arcsec) aperture to correctly extract the X-ray flux in all XRT observation after 0.1 days

(Figure 7).

7 The Luminosity, Star Formation Rate, and Metallicity of NGC 2770

We determine the properties of NGC2770 using optical observations from the Sloan Digital

Sky Survey (SDSS), near-IR data from the Two Micron All Sky Survey (2MASS), far-IR

data from the Infrared Astronomical Satellite (IRAS), and radio data from the VLA. The

broad-band spectral energy distribution (SED) is shown in Figure 8. Using the SDSS

photometry we infer55 a luminosity of 0.3 L∗. The SDSS u-band luminosity of 3.5 × 1027

erg s−1 Hz−1, corresponds56 to an unobscured star formation rate, SFR ≈ 0.5 M⊙ yr−1.

In addition, NGC2770 is detected at decimeter and far-IR (FIR) wavelengths, which

are sensitive to obscured star formation activity. We find an integrated 20-cm flux of

17.8± 1.8 mJy, corresponding57 to SFR ≈ 0.6 M⊙ yr−1. The far-IR luminosity as inferred

from detections with the Infrared Astronomical Satellite (12− 100 µm) is LFIR ≈ 1010 L⊙,

corresponding56 to SFR ≈ 0.9 M⊙ yr−1. Thus, all three star formation indicators lead to

a rate of about 0.5 − 1 M⊙ yr−1, with at most 50% obscured star formation. This is a

modest star formation rate, which normalized by luminosity is roughly similar to that in

the Milky Way galaxy.

As shown in Figure 8, NGC2770 is consistent with a typical spiral galaxy (Sb/Sc)

template, but is at least two orders of magnitude less luminous in the far-IR band than

the extreme starburst galaxy Arp 220. This indicates that the elevated core-collapse SN

rate in NGC2770 is not due to on-going starburst activity, as in Arp 220 (with an inferred

SN rate of 4 ± 2 yr−1).

We next investigate the metallicity of NGC 2770 in the context of a comparison to

the metallicities of GRB-SNe host galaxies. To this end, we obtained two 1200 s spectra

with the Dual Imaging Spectrograph on the Astrophysical Research Consortium 3.5-m

telescope at Apache Point Observatory. We used a 300 l/mm grating in the wavelength

range 5930-8700 Å (dispersion of 2.3 Å/pix) and a 400 l/mm grating in the wavelength

range 3450-5640 Å (dispersion of 1.8 Å/pix). The 1.5 arcsec wide slit was aligned along
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the major axis of the galaxy (corresponding to a position angle of −30◦). The spectra

were reduced using standard packages in IRAF. Flux calibration was achieved with the

spectrophotometric standard star Feige 34.

The reduced spectrum covers the full visible extent of NGC 2770, a semi-major axis

of about 9 kpc. We detect several bright HII regions along the slit, which produce bright

emission lines of hydrogen, oxygen, nitrogen, and sulfur. The profiles of the Hα and

[NII] emission lines along the major axis of the galaxy are shown in Figure 9. Using the

full complement of detected lines we simultaneously infer58 the ionization parameter and

metallicity of the various HII regions. The ionization parameter is relatively uniform with

a value of 107.4±0.2 cm s−1. The metallicity as a function of galactocentric radius exhibits

a shallow gradient with a central metallicity of 12 + log(O/H) ≈ 9.1 or about 1.5 Z⊙. At

3− 8 kpc the metallicity is about 0.6 Z⊙, and near the position of XRO080109 it is about

0.5 Z⊙. A comparison to the luminosity-metallicity relation from SDSS59 indicates that

NGC 2770 is located along the relation.

It has been recently argued60 that the host galaxies of long GRBs are preferentially

low metallicity and luminosity systems, with 12 + log(O/H) ≈ 7.9 − 8.6 and MB ≈ −15.9

to −19.3 mag. Clearly, NGC 2770 has a higher luminosity and metallicity than these host

galaxies, although we note that with the shallow gradient the metallicity near the position

of XRO080109 is marginally consistent with those of long GRB hosts.
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∆t Bin Width Unabsorbed Flux Flux Error

(sec) (sec) (erg cm−2 s−1) (erg cm−2 s−1)

29.009995 15.000000 2.61×10−10 5.1×10−11

54.009995 10.000000 4.38×10−10 8.1×10−11

69.009995 5.0000000 6.94×10−10 1.4×10−10

79.009995 5.0000000 6.94×10−10 1.4×10−10

91.510010 7.5000076 6.04×10−10 1.1×10−10

106.51001 7.5000000 4.83×10−10 9.8×10−11

121.51001 7.5000000 5.84×10−10 1.0×10−10

134.01001 5.0000000 6.34×10−10 1.3×10−10

146.51001 7.5000000 4.43×10−10 9.4×10−11

166.51001 12.500000 2.90×10−10 5.9×10−11

189.01001 10.000000 3.01×10−10 6.7×10−11

209.01001 10.000000 3.77×10−10 7.5×10−11

231.51001 12.500000 2.41×10−10 5.4×10−11

264.01001 20.000000 1.50×10−10 3.3×10−11

299.01001 15.000000 2.01×10−10 4.5×10−11

336.51001 17.500000 1.03×10−10 2.9×10−11

374.01001 20.000000 1.12×10−10 2.9×10−11

424.01001 30.000000 6.04×10−11 1.7×10−11

529.01001 75.000000 2.61×10−11 7.2×10−12

759.01001 155.00000 1.16×10−11 3.3×10−12

14953.111 9184.4981 2.04×10−13 1.0×10−13

815541.60 682047.40 1.94×10−14 8.7×10−15

2708958.41 1177385.41 . 5.12 × 10−14 —

Table 1. Summary of Swift/XRT measurements (0.3-10 keV) of XRO 080109/SN 2008D. Time

is measured since the derived explosion date, 2008 Jan 9.56 UT.
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Date ∆t Exposure Telescope/Inst.

(UT) (days) (s)

Jan 11.36 1.80 1200 Gemini/GMOS

Jan 12.51 2.95 1500 Gemini/GMOS

Jan 13.49 3.93 2400 Gemini/GMOS

Jan 14.46 4.90 2400 Gemini/GMOS

Jan 15.48 5.92 1500 Gemini/GMOS

Jan 16.49 6.93 1500 Gemini/GMOS

Jan 17.44 7.88 1500 Gemini/GMOS

Jan 18.35 8.79 1500 Gemini/GMOS

Jan 18.52 8.96 2400 APO 3.5m/DIS

Jan 19.50 9.94 1500 Gemini/GMOS

Jan 22.50 12.94 1500 Gemini/GMOS

Jan 25.47 15.91 1500 Gemini/GMOS

Jan 30.20 20.66 2400 APO 3.5m/DIS

Jan 30.60 21.04 1500 Gemini/GMOS

Jan 31.40 21.84 2×900 P200/DBSP

Feb 1.31 22.75 2×900 P200/DBSP

Feb 7.28 28.7 2×1500 P200/DBSP

Feb 9.39 30.83 1200 HET

Feb 11.37 32.81 1200 HET

Feb 11.38 32.82 1550 Gemini/GMOS

Feb 12.23 33.67 2400 HET

Feb 15.44 36.88 1500 Gemini/GMOS

Feb 19.38 40.82 2100 Gemini/GMOS

Feb 22.40 43.84 3600 APO 3.5m/DIS

Feb 23.41 44.85 2400 Gemini/GMOS

Feb 25.11 46.55 2400 HET

Feb 27.12 48.56 2400 HET

Feb 27.39 48.83 2400 Gemini/GMOS

Mar 1.36 51.80 1800 Gemini/GMOS

Mar 2.10 52.54 2400 HET

Mar 6.35 56.79 2100 Gemini/GMOS

Table 2. Summary of Spectroscopic Observations of XRO 080109/SN 2008D.
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Mid-Exposure Time Bin Width Filter m σ(m) Fν σ(Fν)

(UT) (s) (Vega mag) (Vega mag) (erg cm−2 s−1 Hz−1) (erg cm−2 s−1 Hz−1)

2008-01-09 17:09:33.9 8854 UVW2 20.52 +0.44/−0.31 4.581×10−29 1.516×10−29

2008-01-11 06:09:10.1 14292 UVW2 & 20.96 — . 3.054 × 10−29 —

2008-01-11 16:29:13.4 17980 UVW2 & 21.40 — . 2.083 × 10−29 —

2008-01-12 05:15:50.1 22752 UVW2 & 20.96 — . 3.183 × 10−29 —

2008-01-12 20:39:58.8 26900 UVW2 & 21.16 — . 2.545 × 10−29 —

2008-01-13 15:17:24.3 34483 UVW2 & 21.27 — . 2.233 × 10−29 —

2008-01-14 14:31:44.9 43473 UVW2 & 21.40 — . 2.060 × 10−29 —

2008-01-15 18:34:22.3 51660 UVW2 & 21.40 — . 1.927 × 10−29 —

2008-01-16 16:56:27.4 23324 UVW2 & 20.96 — . 3.159 × 10−29 —

2008-01-18 22:02:20.0 80486 UVW2 & 21.71 — . 1.456 × 10−29 —

2008-01-20 05:55:48.4 29168 UVW2 & 21.40 — . 2.034 × 10−29 —

2008-01-09 17:16:38.3 8790 UVM2 & 20.11 — . 6.621 × 10−29 —

2008-01-11 06:21:49.2 14501 UVM2 20.34 +0.42/−0.30 5.535×10−29 1.774×10−29

2008-01-11 16:45:26.4 17741 UVM2 20.48 +0.27/−0.22 4.839×10−29 1.069×10−29

2008-01-12 05:24:13.1 22437 UVM2 & 20.43 — . 5.259 × 10−29 —

2008-01-12 20:47:17.5 26680 UVM2 & 20.74 — . 3.714 × 10−29 —

2008-01-13 15:22:23.6 34547 UVM2 & 20.86 — . 3.288 × 10−29 —

2008-01-14 14:36:39.7 43443 UVM2 & 21.01 — . 2.945 × 10−29 —

2008-01-15 18:39:52.4 51639 UVM2 & 20.86 — . 3.252 × 10−29 —

2008-01-16 17:01:42.5 23228 UVM2 & 20.52 — . 4.758 × 10−29 —

2008-01-18 22:12:21.2 80708 UVM2 & 21.62 — . 1.813 × 10−29 —

2008-01-20 06:09:58.3 29129 UVM2 & 21.18 — . 2.353 × 10−29 —

2008-01-09 17:03:50.9 8782 UVW1 20.12 +0.43/−0.31 8.193×10−29 2.681×10−29

2008-01-11 05:57:31.1 13897 UVW1 20.01 +0.20/−0.17 9.047×10−29 1.535×10−29

2008-01-11 16:15:35.7 17832 UVW1 19.69 +0.13/−0.12 1.222×10−28 1.368×10−29

2008-01-12 05:10:10.5 22861 UVW1 20.33 +0.34/−0.26 6.795×10−29 1.829×10−29

2008-01-12 20:34:50.3 26948 UVW1 & 20.78 — . 4.428 × 10−29 —
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2008-01-13 15:12:46.4 34337 UVW1 & 20.93 — . 3.915 × 10−29 —

2008-01-14 14:27:39.0 43407 UVW1 & 21.01 — . 3.648 × 10−29 —

2008-01-15 18:29:42.2 51576 UVW1 & 22.12 — . 3.780 × 10−29 —

2008-01-17 04:08:33.3 63877 UVW1 & 21.68 — . 1.982 × 10−29 —

2008-01-18 10:45:45.7 40881 UVW1 & 21.01 — . 3.639 × 10−29 —

2008-01-21 04:21:47.1 46692 UVW1 & 21.68 — . 2.045 × 10−29 —

2008-01-26 04:03:58.5 141936 UVW1 & 22.29 — . 1.172 × 10−29 —

2008-01-28 21:53:24.3 89869 UVW1 & 21.85 — . 1.662 × 10−29 —

2008-02-03 08:05:44.8 170423 UVW1 & 21.54 — . 2.105 × 10−29 —

2008-02-09 08:37:03.1 20536 UVW1 & 21.41 — . 2.614 × 10−29 —

2008-01-09 17:06:42.2 8736 U 19.76 +0.32/−0.25 1.804×10−28 4.574×10−29

2008-01-11 06:02:19.0 13941 U 18.41 +0.06/−0.06 6.274×10−28 3.472×10−29

2008-01-11 16:22:33.9 17705 U 18.47 +0.05/−0.05 5.923×10−28 2.677×10−29

2008-01-12 05:13:46.1 22714 U 18.80 +0.09/−0.09 4.369×10−28 3.594×10−29

2008-01-12 20:37:53.5 26843 U 19.03 +0.10/−0.09 3.530×10−28 3.034×10−29

2008-01-13 15:14:42.1 34350 U 19.23 +0.10/−0.09 2.946×10−28 2.605×10−29

2008-01-14 14:29:36.3 43383 U 19.22 +0.09/−0.08 2.963×10−28 2.381×10−29

2008-01-15 18:31:54.0 51554 U 19.21 +0.10/−0.09 2.980×10−28 2.507×10−29

2008-01-17 04:15:41.5 64125 U 19.11 +0.05/−0.05 3.286×10−28 1.450×10−29

2008-01-18 10:52:30.4 41083 U 19.10 +0.09/−0.09 3.295×10−28 2.733×10−29

2008-01-21 04:37:19.7 46428 U 18.93 +0.05/−0.05 3.860×10−28 1.676×10−29

2008-01-26 04:16:48.4 141673 U 18.92 +0.03/−0.02 3.904×10−28 9.028×10−30

2008-01-29 12:32:36.2 141678 U 19.03 +0.03/−0.03 3.541×10−28 1.065×10−29

2008-02-02 22:38:19.0 135684 U 19.40 +0.05/−0.05 2.500×10−28 1.107×10−29

2008-02-10 12:04:17.9 193928 U 20.30 +0.12/−0.11 1.094×10−28 1.159×10−29

2008-02-16 03:52:30.2 99075 U 20.43 +0.13/−0.12 9.726×10−29 1.089×10−29

2008-02-23 06:04:01.3 12053 U 20.45 +0.16/−0.14 9.541×10−29 1.313×10−29

2008-01-09 17:08:09.3 8733 B & 20.45 — . 2.649 × 10−28 —

2008-01-11 06:04:59.5 14002 B 19.01 +0.07/−0.07 1.007×10−27 6.708×10−29

2008-01-11 16:26:02.9 17692 B 19.11 +0.06/−0.06 9.174×10−28 4.878×10−29
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2008-01-12 05:15:24.1 22664 B 19.29 +0.10/−0.09 7.800×10−28 6.797×10−29

2008-01-12 20:39:19.0 26811 B 19.30 +0.09/−0.08 7.739×10−28 5.889×10−29

2008-01-13 15:15:47.1 34371 B 19.39 +0.08/−0.08 7.096×10−28 5.183×10−29

2008-01-14 14:30:38.7 43386 B 19.27 +0.07/−0.06 7.915×10−28 4.806×10−29

2008-01-15 18:33:04.0 51559 B 19.20 +0.07/−0.06 8.462×10−28 5.092×10−29

2008-01-17 04:18:45.3 64234 B 18.98 +0.04/−0.04 1.040×10−27 3.945×10−29

2008-01-18 10:55:21.9 41174 B 18.82 +0.08/−0.07 1.203×10−27 8.134×10−29

2008-01-21 04:43:40.2 46344 B 18.58 +0.04/−0.04 1.506×10−27 5.279×10−29

2008-01-26 04:22:01.8 141589 B 18.50 +0.02/−0.02 1.607×10−27 2.781×10−29

2008-01-29 12:38:08.9 141650 B 18.56 +0.02/−0.02 1.528×10−27 3.052×10−29

2008-02-02 22:44:12.4 135760 B 18.75 +0.03/−0.02 1.287×10−27 2.963×10−29

2008-02-10 12:54:34.9 191010 B 19.66 +0.06/−0.06 5.549×10−28 2.950×10−29

2008-02-18 03:16:32.0 269426 B 20.25 +0.08/−0.07 3.220×10−28 2.254×10−29

2008-02-23 11:48:17.2 2977 B 21.01 +0.66/−0.41 . 2.170 × 10−28 —

2008-01-09 17:15:14.4 8721 V & 19.66 — . 4.98 × 10−28 —

2008-01-11 06:18:10.0 14302 V 18.38 +0.10/−0.09 1.625×10−27 1.461×10−28

2008-01-11 16:43:11.8 17629 V 18.41 +0.07/−0.06 1.573×10−27 9.493×10−29

2008-01-12 05:23:24.1 22413 V 18.50 +0.12/−0.11 1.454×10−27 1.532×10−28

2008-01-12 20:46:18.5 26648 V 18.52 +0.09/−0.09 1.431×10−27 1.170×10−28

2008-01-13 15:21:00.1 34478 V 18.42 +0.08/−0.07 1.555×10−27 1.053×10−28

2008-01-14 14:35:34.7 43398 V 18.27 +0.06/−0.06 1.786×10−27 9.862×10−29

2008-01-15 18:38:40.0 51585 V 18.11 +0.06/−0.05 2.071×10−27 1.069×10−28

2008-01-17 04:23:21.6 64148 V 17.93 +0.04/−0.04 2.451×10−27 9.093×10−29

2008-01-19 18:14:22.2 83914 V 17.82 +0.06/−0.06 2.724×10−27 1.513×10−28

2008-01-21 12:00:20.0 20316 V 17.48 +0.05/−0.04 3.698×10−27 1.550×10−28

2008-01-26 04:24:40.7 141566 V 17.41 +0.02/−0.02 3.970×10−27 6.771×10−29

2008-01-29 12:33:46.8 141227 V 17.41 +0.02/−0.02 3.966×10−27 6.891×10−29

2008-02-02 22:38:00.5 135243 V 17.50 +0.02/−0.02 3.645×10−27 6.528×10−29

2008-02-10 11:58:41.7 194144 V 17.96 +0.03/−0.03 2.380×10−27 6.056×10−29

2008-02-18 03:05:35.5 269360 V 18.37 +0.03/−0.03 1.633×10−27 4.748×10−29
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2008-02-24 16:01:14.1 104764 V 18.68 +0.07/−0.06 1.231×10−27 7.343×10−29

2008-03-12 13:53:04.6 3538 V 19.03 +0.08/−0.08 8.926×10−28 6.714×10−29

Table 3: Summary of Swift/UVOT Observations of

XRO 080109/SN 2008D. Magnitudes are not corrected for ex-

tinction. All upper limits are 3σ. The UVOT images were

reduced using standard packages within the HEASOFT soft-

ware package. data were reduced using standard packages in

IRAF. Utilizing pre-explosion images from 2008 Jan 7 UT, we

used the ISIS image subtraction package62 to eliminate the

host galaxy contamination from all UVOT images. The only

exception is the UVW2 filter for which we used a deep tem-

plate image constructed from post-explosion data in which

the source is not detected. The early UVOT data are binned

to increase the signal-to-noise ratio. The data have not been

corrected for host galaxy extinction.
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Date g σ(g) r σ(r) i σ(i) z σ(z)

(MJD) (mag) (mag) (mag) (mag) (mag) (mag) (mag) (mag)

54476.38 18.48 0.12 18.00 0.05 17.85 0.05 17.59 0.06

54477.37 18.57 0.08 18.01 0.07 17.86 0.05 17.49 0.07

54478.37 18.78 0.15 18.11 0.15 17.92 0.05 17.61 0.09

54479.32 18.81 0.05 18.18 0.09 17.91 0.05 17.61 0.07

54480.36 18.51 0.08 17.87 0.05 17.67 0.05 17.27 0.10

54481.36 18.49 0.06 17.88 0.11 17.57 0.04 17.15 0.05

54483.35 18.35 0.05 17.55 0.10 17.33 0.05 16.89 0.12

54484.35 18.21 0.09 17.45 0.07 17.22 0.05 16.77 0.05

54485.34 17.94 0.07 17.23 0.05 17.00 0.04 16.56 0.07

54496.32 17.84 0.04 16.96 0.04 16.74 0.04 16.20 0.05

54497.22 17.83 0.05 16.87 0.05 16.67 0.05 16.19 0.05

54502.26 18.07 0.05 17.02 0.05 — — 16.29 0.05

54504.27 18.11 0.07 17.07 0.06 16.84 0.08 16.28 0.05

54505.27 18.29 0.05 17.17 0.06 16.83 0.04 16.36 0.05

54506.27 18.31 0.04 17.22 0.08 16.89 0.04 16.39 0.08

54507.26 18.41 0.05 17.25 0.06 16.93 0.05 16.43 0.05

54508.26 18.57 0.05 17.31 0.05 16.97 0.03 16.48 0.03

54509.26 18.53 0.05 17.39 0.05 17.04 0.05 16.46 0.05

54512.26 18.83 0.06 17.54 0.04 17.16 0.04 16.62 0.05

54513.22 18.82 0.05 17.56 0.07 17.21 0.06 16.63 0.03

54514.19 — — 17.71 0.05 17.23 0.05 16.60 0.05

54515.40 — — — — — — 16.69 0.08

54522.27 19.29 0.06 17.97 0.06 17.50 0.03 16.90 0.07

54523.26 19.43 0.04 17.96 0.06 17.58 0.06 16.89 0.07

54524.26 19.34 0.10 17.98 0.07 17.57 0.05 16.88 0.06

54525.26 19.34 0.08 17.99 0.07 17.60 0.06 16.95 0.08

54529.26 19.43 0.08 18.15 0.08 17.70 0.06 17.01 0.09

54530.25 19.60 0.07 18.19 0.08 17.78 0.05 16.99 0.08

54531.27 19.55 0.08 18.15 0.09 17.75 0.05 17.11 0.08

54534.23 19.54 0.10 18.35 0.12 17.87 0.07 17.14 0.06

54535.29 19.46 0.10 18.27 0.06 17.88 0.06 17.10 0.06

54536.17 19.55 0.08 18.19 0.10 17.82 0.10 17.04 0.08

54537.23 19.54 0.09 18.28 0.07 17.89 0.08 17.12 0.08

54538.23 19.61 0.08 18.32 0.07 17.91 0.06 17.12 0.10

Table 4. Summary of Palomar 60-inch Imaging Observations of XRO 080109/SN 2008D. Ob-

servations of the transient were obtained with the Robotic63 Palomar 60-inch Telescope. The

data were reduced using standard using standard packages within IRAF. Utilizing pre-explosion

images from SDSS, we used the ISIS image subtraction package62 to eliminate the host galaxy

contamination from all P60 images. The data have not been corrected for host galaxy extinction.
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Date g σ(g) r σ(r) i σ(i)

(UT) (mag) (mag) (mag) (mag) (mag) (mag)

Jan 11.34 18.75 0.10 18.13 0.06 — —

Jan 12.50 — — 18.19 0.07 — —

Jan 13.48 — — 18.18 0.06 — —

Jan 14.45 — — 18.16 0.08 — —

Jan 15.45 18.74 0.08 17.99 0.05 17.73 0.06

Jan 16.49 — — 17.83 0.05 — —

Jan 17.43 — — 17.70 0.06 — —

Jan 18.43 — — 17.58 0.06 — —

Jan 19.49 — — 17.33 0.04 — —

Jan 25.46 — — 17.09 0.05 — —

Jan 30.58 17.89 0.09 17.02 0.05 16.69 0.06

Feb 11.41 18.60 0.08 17.45 0.05 16.99 0.05

Feb 15.43 19.16 0.09 17.71 0.05 17.18 0.06

Feb 19.37 19.42 0.08 17.91 0.06 17.33 0.06

Feb 23.40 19.55 0.08 18.10 0.06 17.49 0.06

Feb 27.38 19.70 0.08 18.25 0.06 17.64 0.07

Mar 6.34 19.84 0.08 18.41 0.06 17.84 0.06

Table 5. Summary of Gemini/GMOS Imaging Observations of XRO 080109/SN 2008D. Data

were reduced using standard tools within the gemini package of IRAF. We adopt a background

area (annulus) near the transient to correct for the host galaxy contamination. The data have

not been corrected for host galaxy extinction.
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Date ∆t Freq. Fν σ(Fν) Config.

(UT) (days) (GHz) (mJy) (mJy)

Jan 10.18 0.65 8.46 0.033 0.033 VLA

Jan 10.20 0.64 4.86 0.022 0.018 VLA

Jan 10.21 0.65 1.43 0.100 0.102 VLA

Jan 10.21 0.65 22.5 0.020 0.031 VLA

Jan 11.32 1.76 8.46 0.050 0.024 VLA

Jan 11.33 1.77 4.86 0.101 0.039 VLA

Jan 12.54 2.98 22.5 1.038 0.051 VLA

Jan 12.58 3.02 8.46 0.131 0.058 VLA

Jan 12.60 3.04 4.86 0.021 0.032 VLA

Jan 13.29 3.73 8.46 0.111 0.018 VLA

Jan 13.33 3.77 22.5 1.685 0.140 VLA

Jan 13.35 3.79 43.4 2.959 0.568 VLA

Jan 14.14 4.58 15.0 1.137 0.196 VLA

Jan 14.26 4.70 8.46 0.392 0.020 VLA

Jan 14.32 4.76 22.5 2.726 0.048 VLA

Jan 14.36 4.80 43.4 3.505 0.203 VLA

Jan 14.50 4.94 95.0 3.200 0.700 CARMA

Jan 15.25 5.69 22.5 3.248 0.044 VLA

Jan 16.10 6.54 22.5 2.417 0.108 VLA

Jan 16.31 6.75 4.86 0.363 0.032 VLA

Jan 16.33 6.77 8.46 1.288 0.024 VLA

Jan 16.40 6.84 95.0 0.600 0.300 CARMA

Jan 17.36 7.80 43.4 3.267 0.403 VLA

Jan 17.38 7.82 22.5 3.919 0.069 VLA

Jan 17.41 7.85 4.86 0.241 0.028 VLA

Jan 17.42 7.86 8.46 0.984 0.020 VLA

Jan 18.50 8.94 95.0 0.290 0.350 CARMA
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Jan 19.30 9.74 43.4 2.707 0.253 VLA

Jan 19.32 9.76 22.5 3.274 0.068 VLA

Jan 20.10 10.54 1.43 0.077 0.084 VLA

Jan 20.14 10.58 15.0 3.554 0.199 VLA

Jan 20.19 10.63 4.86 0.517 0.022 VLA

Jan 20.21 10.65 8.46 1.925 0.029 VLA

Jan 21.16 11.60 8.46 2.741 0.043 VLA

Jan 21.16 11.60 4.86 0.940 0.052 VLA

Jan 21.18 11.62 22.5 2.643 0.041 VLA

Jan 21.19 11.63 43.4 1.086 0.326 VLA

Jan 23.14 13.58 15.0 2.367 0.109 VLA

Jan 23.16 13.60 8.46 2.311 0.047 VLA

Jan 23.16 13.60 4.86 0.836 0.032 VLA

Jan 23.45 13.89 43.4 1.282 0.220 VLA

Jan 23.47 13.91 22.5 2.363 0.064 VLA

Jan 25.16 15.60 15.0 2.060 0.204 VLA

Jan 25.17 15.61 8.46 2.726 0.040 VLA

Jan 25.18 15.62 4.86 1.138 0.032 VLA

Jan 26.56 17.00 22.5 1.686 0.068 VLA

Jan 27.13 17.57 43.4 0.556 0.219 VLA

Jan 27.14 17.58 1.43 0.038 0.114 VLA

Jan 27.15 17.59 22.5 1.241 0.051 VLA

Jan 27.41 17.85 15.0 2.410 0.378 VLA

Jan 27.42 17.86 8.46 2.502 0.043 VLA

Jan 27.43 17.87 4.86 1.336 0.030 VLA

Jan 27.46 17.90 43.4 1.180 0.250 VLA

Jan 27.47 17.91 22.5 1.443 0.099 VLA

Jan 30.28 20.72 43.4 0.380 0.382 VLA

Jan 30.30 20.74 22.5 1.202 0.090 VLA

Jan 30.31 20.75 15.0 2.258 0.388 VLA
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Jan 30.32 20.76 8.46 2.216 0.056 VLA

Jan 30.33 20.77 4.86 2.514 0.054 VLA

Feb 1.22 22.66 15.0 2.140 0.351 VLA

Feb 1.17 22.61 22.5 1.034 0.061 VLA

Feb 1.23 22.67 8.46 2.295 0.027 VLA

Feb 1.24 22.68 4.86 2.095 0.038 VLA

Feb 3.17 24.61 43.4 0.000 0.391 VLA

Feb 3.19 24.63 1.43 0.103 0.138 VLA

Feb 3.20 24.64 8.46 1.958 0.048 VLA

Feb 3.21 24.65 4.86 2.137 0.057 VLA

Feb 3.22 24.66 22.5 0.950 0.109 VLA

Feb 8.08 29.52 8.46 1.350 0.080 VLBA

Feb 8.22 29.66 8.46 1.421 0.025 VLA

Feb 8.23 29.67 4.86 1.910 0.080 VLA

Feb 9.32 30.76 1.43 0.378 0.147 VLA

Feb 9.33 30.77 22.5 0.639 0.095 VLA

Feb 9.34 30.78 15.0 0.231 0.132 VLA

Feb 14.22 35.66 1.43 0.283 0.263 VLA

Feb 14.26 35.70 22.5 0.451 0.129 VLA

Feb 14.28 35.72 15.0 0.013 0.135 VLA

Feb 14.29 35.73 8.46 1.140 0.051 VLA

Feb 14.30 35.74 4.86 1.775 0.053 VLA

Feb 21.41 41.85 1.43 0.947 0.235 VLA

Feb 21.43 41.87 8.46 0.941 0.050 VLA

Feb 21.43 41.87 4.86 1.503 0.040 VLA

Feb 24.12 45.56 1.43 0.572 0.195 VLA

Feb 24.14 45.58 22.5 0.256 0.065 VLA

Feb 24.15 45.59 4.86 1.144 0.037 VLA

Feb 24.16 45.60 8.46 0.813 0.033 VLA

Mar 7.10 57.54 1.43 2.966 0.412 VLA
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Mar 7.11 57.55 4.86 1.427 0.051 VLA

Mar 7.12 57.56 8.46 0.749 0.030 VLA

Table 6: Radio observations of XRO 080109/SN 2008D. All

VLA observations were obtained in the standard continuum

mode with 2 × 50 MHz bands. We used the extragalac-

tic source J0911+338 for phase referencing, and 3C 48 and

3C 287 for flux calibration. The VLA and VLBA data were

reduced using standard packages within the Astronomical Im-

age Processing System (AIPS). The data from CARMA were

reduced using the MIRIAD software package. The fluxes are

determined using a Gaussian profile fit to the point source at

the position of XRO 080109.
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Figure 1. Swift/XRT spectrum of the X-ray outburst fit with power-law (top) and blackbody

(bottom) models. A comparison of the model residuals (lower panels) reveals that the power-law

model provides a better fit to the data.
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Figure 2. A high resolution spectrum of XRO 080109/SN 2008D centered on the Na I D (top)

and K I (bottom) absorption lines. Observations were taken with Keck/HIRES. While the Na I

lines are saturated, the K I lines are not, enabling an estimate of the host galaxy extinction.
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Figure 3. We model our Gemini spectra on multiple nights from 2008 Jan 14 to Jan 30 using

spectroscopic fitting code SYNOW. We identify several lines (particularly He I) consistent with

a He-rich Type Ibc classification. We additionally find that the feature near 6150 Å is equally

well fit with Si II or high velocity hydrogen, similar to the case for SN2005bf.53
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Figure 4. Photospheric velocity as a function of time for SN2008D. We used the SN

fitting code SYNOW to analyze the optical spectra and extract the velocities of the Si II
feature at each epoch. The temporal profile of the Si II photospheric velocity is similar to

those measured for other SNe Ibc, modeled54 independently.
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Figure 5. Bolometric magnitude light curve of XRO 080109/SN 2008D. The light curve (red) is

constructed using data from UVOT, P60, SLOTIS, and Gemini and are corrected for host galaxy

extinction of AV = 1.9 mag. We fit the two light curve components (envelope cooling=dashed lies,

SN=dotted lines, sum=solid lines) jointly to determine EK , Mej, and MNi. We use two models

for the SN emission, 56Ni (thin line) and 56Ni+56Co (thick line), of which the latter accounts

for radiactive decay of 56Co in addition to 56Ni. The observed late-time decay is intermediate

between these two models, as expected. Also shown are the light curves of other well-studied

SNe Ibc, of which two (1998bw and 2006aj) are associated with sub-energetic GRBs. The light

curve of SN2008D is fainter than the normal SN2002ap, and peaks at a later time. It is an order

of magnitude less luminous than SN1998bw for which MNi ≈ 0.5 M⊙.
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Figure 6. XRO 080109/SN 2008D as observed with CXO on Jan 19.86 UT. The SN is barely

detected in the observation (labeled). Three nearby sources are also detected and lie within the

PSF of XRT (concentric circles). We note that source ”X1” is also visible in the pre-explosion

XRT image (Main Article, Figure 1).
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Figure 7. The X-ray light curve of XRO 080109/SN 2008D (red) as observed with XRT (circles)

and and CXO (large square) is compared to the afterglows of GRBs 030329, 980425, 031203 and

060218(black, labeled) and other SNe Ibc (grey). The XRT data beyond 0.1 days were corrected

for contamination from three nearby source using our CXO observations (Figure 6). The X-ray

emission from XRO 080109/SN 2008D is by far the earliest detected from any normal SN Ibc and

the luminosity is several orders of magnitude below that of GRBs. An extrapolation of the X-ray

decay beyond 0.1 days, FX ∝ t−0.7 to the time of typical SN observations indicates a similar

luminosity to normal SNe Ibc such as SN1994I.
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Figure 8. Optical to far-IR spectral energy distribution of NGC 2770. The data (black squares)

are from the Sloan Digital Sky Survey (ugriz bands), the Two Micron All Sky Survey (JHK

bands), and the Infrared Astronomical Satellite (12 − 100 µm). Also shown are Sb and Sc spiral

galaxy models, as well as the SED of the galaxy Arp 220. The models are from the Spitzer

Wide-area Infrared Extragalactic survey (SWIRE) template library. The data for NGC 2770 are

in excellent agreement with the spiral galaxy models, but the weak FIR emission clearly rules

out an extreme starburst origin (as for Arp 220).
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Figure 9. Metallicity of HII regions in NGC 2770 as a function of galactocentric radius. The

top panel shows the profile along the slit of the Balmer Hα emission line (black line) and the

[NII]λ6583 emission line (grey line), covering a range of ±9 kpc from the center of NGC 2770. The

underlying uniform emission from the galaxy has been removed in order to isolate the emission

of the HII regions. The thick dotted lines designate the noise level for each emission line. The

middle panel shows the ratio [NII]/Hα for regions of the slit that have a signal-to-noise, S/N > 3

in both lines. This ratio provides a measure of the metallicity. In the bottom panel we plot

the metallicity [12 + log(O/H)] for each HII region using a wide range of emission lines and the

formulation of.58 The conversion between [NII]/Hα and metallicity depends on the ionization

parameter, which we estimate using the ratio of oxygen lines, [OIII]λ5007/[OII]λλ3726, 3729. We

find logq = 7.5± 0.2. The resulting metallicities range from about 1.5 times the Solar metallicity

near the center of the galaxy to about 0.5 times the Solar metallicity at its outskirts. Estimates of

the metallicity in these HII regions from other line ratios (e.g., [NII]/[OII]) indicate a systematic

uncertainty of about 0.2 dex in the values shown in the bottom panel.
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