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Confidence estimates in integrator models of decision-making

Computing decision confidence requires that  in addition to a binary choice, the decision 
process yields a graded value measuring the reliability and consistency  of the internal variables 
contributing to a decision. This can be achieved for other classes of models including models 
based on the integration of evidence that are able to also account for other features of behaviour, 
such as reaction times1-3. 

To demonstrate the generality  of the model predictions (Fig. 4c,d) we simulated a version 
of the integrator model, the “race model”. In race models, separate decision variables accumulate 
evidence for different options and the decision taken is determined by which decision variable 
reaches threshold first (Supplementary  Fig. 6a). To Nsimulate this, in each trial the stimulus is a 
normally  distributed random variable s(t) ∈ N(µstim, σstim), where the sign of µstim sets the direction 
of correct choice and the signal-to-noise ratio µstim/σstim sets the difficulty of discrimination.

In the simplest  version of the race model there are two independent decision variables that 
accumulate evidence for and against the hypothesis that µstim > 0. Each decision variable, e(t), 
accumulates evidence for one direction:

where  and  

When one of the decision variables, e+(t) or e-(t), reaches a predetermined threshold, θ, the race is 
terminated and a decision is generated in favour of the decision variable crossing threshold first. 
Therefore at decision time, tθ, e+(tθ) = θ or e-(tθ) = θ. We simulated this model with the following 
parameters: µstim ∈ U(-0.2,0.2), σstim =1, θ =100, and dt = 1. Supplementary Fig. 6c shows the 
fraction of choices in favour of the “+ hypothesis”, µstim > 0, as a function of stimulus, µstim. This 
psychometric curve is qualitatively similar to that of rats (compare to Fig. 1c). 

 An estimate of decision confidence can be computed in a race model by measuring the 
distance between the two decision variables at the time the race is terminated. This was originally 
proposed by Vickers4, who termed it  the “balance of evidence”. To see that the distance between 
decision variables can provide a reasonable estimate of confidence, we plot  choice accuracy  as a 
function of this distance, Δe =│e+(tθ) - e-(tθ)│ (Supplementary Fig. 6d, dashed line). This 
distance, Δe, can be normalized, Δe/θ, to yield the “balance of evidence” measure4. Here instead 
we sought to compute an estimate, δ, that is closer to the veridical confidence and reflects the 
actual outcome probability. For a perfectly calibrated or veridical confidence estimate δ would 
correspond to the probability of correct  outcome, from chance level (δ = 0) to perfect (δ = 1) 
performance. The consideration of the theoretically appropriate calibration method is beyond our 
scope. For a given signal to noise ratio the correct calibration function may  be derived by 
considering the error rate as a function of the decision threshold1-3. Here we used an 
approximation, δ = f(Δe) = 2/(1+ec(Δe/θ)), with c =1/3, which provides excellent performance 
across multiple stimuli (see Supplementary Fig. 6b). The role of calibration is illustrated in 
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Supplementary Fig 6d, showing that accuracy  is nearly a linear function of δ (solid line) in 
contrast to the normalized distance, Δe/θ (dashed line). Finally, when this confidence estimate, δ, 
is plotted as function of stimulus and outcome it  shows the same pattern as the model in main text 
(cf. Fig. 4d and Supplementary  Fig. 6e). Note that for a given stimulus range (signal-to-noise ratio, 
µstim/σstim), there is only a single free parameter (threshold, θ) that determines the slope of the 
psychometric function. This qualitative pattern—the opposing V-shaped curves for correct and 
error choices—was robust to different choices of parameters. This example demonstrates that 
confidence estimates can be readily computed in other classes of decision models, and yield 
qualitatively similar predictions.

 The confidence estimate examined is not unique, however, and may be generalized 
to other measures of decision uncertainty. For instance, the variance or entropy of the decision 
variables could provide a basis for confidence estimation. For the race model, the variance of the 
decision variables is simply the square of the estimate introduced above: δV=(e+(tθ) - e-(tθ))2. The 
entropy of decision variables pi, is δS =-∑i  pi log(pi). For the race model this can be expressed as 
δS =- p+ log(p+) - p- log(p-) with p+/- = e+/-(tθ)/(e+(tθ) + e-(tθ)). The limiting cases of maximum 
and minimum uncertainty are instructive and easy to calculate. Uncertainty is highest when the 
two decision variables reach threshold at the same time, which would make δS  = 1 bit, while 
uncertainty  is lowest when all the evidence accrues in favour of one decision variable, which 
would make δS  = 0 bit. Such measures are likely  to be useful when considering confidence 
estimates based on a population of neurons5. Note, however, that δS needs to be calibrated in order 
to provide veridical outcome predictions. Therefore measures like δS could serve as sufficient 
statistics for computing confidence that need to be calibrated to yield an instantaneous estimate of 
outcome likelihood. The appropriate calibration function in turn can be found using reinforcement 
learning.  

Intuition for the confidence model

 To provide intuition into the unexpected pattern of uncertainty as a function of 
stimulus and outcome (Fig. 4c) we need to examine how different stimulus and memory sample 
configurations lead to a choice and an estimate of confidence (Fig. 4a). Note that the model (or a 
subject) has access only to a stimulus sample and not the stimulus type (e.g. 56/44) as plotted. 
First, consider that error choices occur when on a given trial the stimulus, si, and memory, bi 
samples are reversed compared to the mean of their respective distributions. This can only occur 
within a region where the two distributions overlap, whereas correct ordering may  occur over the 
entire range of stimulus values. Therefore the size of the overlap  region will place a limit on the 
maximal confidence values that  can be attained for error choices. Since the region of overlap is 
smaller than the entire range, the maximal distance between samples will be smaller for errors 
than correct  choices, resulting in lower confidence estimates (higher uncertainty) in the choice on 
average. Moreover, the further away the stimulus is from the boundary, the smaller the possible 
region of overlap  between their distributions, and therefore the smaller the maximum possible 
distance between the two samples in an error trial. Consequently, for easy  stimuli errors are rare 
because the overlap is small, and in those few incorrect trials the samples cannot possibly  be far 
from each other resulting in low confidence estimates (high uncertainty). 
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Decision confidence or risk?

Decision confidence is a form of subjective uncertainty, but it is important to distinguish it 
from other forms of uncertainty. The term “uncertainty” is often used synonymously with reward 
or outcome “risk”6-10. “Decision uncertainty” and “outcome uncertainty” are similar in that both 
are based on calculating the variance or entropy across a set of variables. The critical distinction is 
the set of variables over which the measure is calculated. Decision uncertainty  is measured across 
variables observed in a single trial. Outcome uncertainty, in contrast, is measured across outcomes 
observed over multiple trials. 

In free choice tasks it is possible to independently manipulate outcome probability and 
outcome variance. In contrast, in two-alternative psychophysical decision tasks outcome 
probability ranges from 0.5 to 1 and therefore covaries with outcome variance. Hence our data are 
consistent  with either a representation of outcome probability or outcome uncertainty signals. 
Either way, the computation of such signal must incorporate an estimate of decision uncertainty.
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Supplementary Figure 1. Anatomical location of recording sites
Nissl-stained coronal section of rat frontal cortex showing the lesion sites 
from one tetrode. Left shows the estimated area of the recordings from 3 
rats overlaid on a section 3.60 mm anterior to bregma. Recording loca-
tions ranged from +3.0 mm to +4.2 mm.
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a, Behavioural accuracy as a function of stimulus and rate for a single 
neuron (same as in Fig 4.e,f ). Mean accuracy +/- s.e.m is plotted as a func-
tion of stimulus and neural �ring rate. Trials with at least one spike were 
assigned to low or high �ring rates according to whether the spike count 
was above or below the median. b, Average behavioural accuracy as a 
function of stimulus and rate for the negative outcome selective neuron 
population (Fig 4.g,h). Error bars represent s.e.m. across neurons. c, Accu-
racy as a function of stimulus and decision uncertainty in the model. 
Trials are divided into low and high uncertainty groups (below and 
above median uncertainty levels).
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Supplementary Figure 2. Neural activity predicts behavioural 
accuracy beyond stimulus information
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a,b, Schematics illustrating the predictions of the con�dence model (a), and 
the side selectivity model (b), with colours denoting the outcome of a choice 
(correct:  green; error: red). Dashed arrows signify the distance between error 
and correct choices of a given di�culty. The direction of solid arrows signi�es 
whether error or correct choices have higher rates for a given stimulus. c, 
Outcome preference index (O.P.) for 32/68 mixtures as a function of O.P. for 
68/32 mixtures. All neurons included were signi�cant when stimuli were 
pooled and colours show (see inset) whether these values were signi�cantly 
outcome selective when considered separately (P < 0.05, permutation test). 
d, Outcome selectivity index (O.S.) for 32-68 mixtures (32/68 and 68/32 com-
bined) as a function of O.S. for 44-56 mixtures (44/56 and 56/44 combined). 
68/32 mixtures. All neurons included were signi�cantly outcome selective 
when stimuli were pooled and colours show (see inset) whether these values 
were signi�cant when considered separately (P < 0.05, permutation test).

Supplementary Figure 3. Outcome selectivity follows predictions 
of the confidence model 
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a, Activity of an example neuron showing positive outcome selectivity. Firing rate of 
a single cell aligned to the time of entry into the choice port. Trials are grouped by 
stimulus di�culty (56/44 and 44/56, redish; 68/32 and 32/68 blueish colours) and 
trial outcome (correct/error, light/dark colours; see inset). Only activity occurring 
before the onset of water delivery or choice port exit is averaged into the PSTH.  
After the anticipation period (1.3 s in this session) the PSTH curves are dashed, signi-
fying a time period during which in some trials rats experienced reward delivery. b, 
Mean normalized �ring of the positive outcome selective population (those show-
ing increased �ring rate in error trials during the anticipation period). Only activity 
occurring while the rat was in the choice port and waiting for a reward is averaged. 
Dashed curves signify time at which reward was experienced in a fraction of ses-
sions. Legend is same as for panel (a). c, Population tuning curves for �ring rate 
during the initial 0.4 s outcome anticipation period as a function of stimulus type 
and outcome for the same population as in (b). Individual tuning curves were nor-
malized and error bars represent s.e.m. across neurons. d, Mean accuracy as a func-
tion of the �ring rate for the same neural population as in b. Firing rates were binned 
for individual neurons and the mean accuracy was calculated for each range of �ring 
rates. These curves were normalized to a maximal �ring rate of 1 and averaged. Error 
bars represent s.e.m. across neurons.

Supplementary Figure 4. Positive outcome selective neural population 
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a, Regression coe�cients for the multiple regression analysis (see Methods) 
for the neuron presented in Figure 2a,b. Error bars mark the standard devia-
tions of the coe�cients estimated using leave-one-out-bootstrap validation. 
Filled circles indicate coe�cients that are signi�cantly di�erent from 0 (P < 
0.05, permutation test).   βtL/R are the coe�cients for the outcome at trial t (t 
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measure the in�uence of the stimulus di�culty and the choice. b, Mean 
regression coe�cients (left scale) for the population of negative outcome 
selective neurons (n = 133) and their standard error. Bar plots show the 
number of neurons (right scale) with signi�cant regression coe�cients (P < 
0.05, permutation test). Only neurons with signi�cant regression coe�cients 
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Supplementary Figure 5. Impact of outcome history on firing rates  
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a, Schematic of a trial for the race model of decision making. Evidence for 
and against an alternative “A” accumulates separately over time. When the 
accumulated evidence crosses a threshold level a decision is generated its 
favour. Con�dence about the decision may be estimated based on the 
distance between the decision variables, ∆e. b, Calibration of ∆e provides the 
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Supplementary Figure 6. Computing confidence in a “race model” 
of decision making
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Supplementary Figure 7. Parameter robustness of decision 
confidence patterns
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Supplementary Figure 8. Stimulus and outcome selectivity are 
correlated

doi: 10.1038/nature07200                                                                                                                                                SUPPLEMENTARY INFORMATION

www.nature.com/nature 11


