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Supplementary Figure 1. Atomistic models of scanning force microscope (SFM) tips 
with different radii R. Tips are made of H-terminated amorphous carbon. Sliding 
simulations are performed on H-terminated diamond  surfaces. Temperature is held 
at 300K and both the tip and the sample are allowed to deform.  

 
Methods 

Molecular dynamics simulations 

Simulations are carried out using the molecular dynamics (MD) technique, which 
is implemented in our in-house code. The essential part of MD simulations is a reliable 
force field (empirical potential function). We use the second generation reactive 
empirical bond-order potential (REBO)1,2. The REBO potential accurately describes 
cohesive energies and chemical reactions of hydrocarbon systems as well as the elastic 
constants of solid carbon-based materials. The range of the REBO potential extends as far 
as the chemical interactions and it does not include dispersive forces. The van der Waals 
(vdW) interactions are therefore integrated with REBO using an analytical switching 
function in the regime where the two potentials overlap. The parameters of the original 
REBO potential remain unchanged. Contributions to the vdW energy are included only 
for those atoms i and j that interact across the contact interface. The total vdW energy can 
be written as: 
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where rij is the interatomic distance, Cij is the aforementioned switching function, and σij 
and εij are parameters equal to 3.4 Å and 1.42 meV for C-C interaction and 2.65 Å and 
0.75 meV for H-H interaction, respectively. With the exception of εij, these parameters 
are the same as in Ref.3, where the adaptive intermolecular REBO (AIREBO) potential 
was introduced to account for vdW forces. We decreased the original value of εij by 50% 
in order to correctly reproduce the experimental value of a pull-off force measured for the 
same systems.  
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In our MD studies, we use flat diamond samples and spherical tips made of 
diamond-like carbon (DLC). The DLC tips are prepared by cutting the desired shapes out 
of a bulk DLC sample. We use tips with radii of curvature R equal 5 nm, 10 nm, 20 nm, 
and 30 nm, and these tips are comprised of 170,467; 315,411; 787,309; and 1,261,762 
atoms, respectively. All tips have the same height of 10 nm as shown in Fig. S1. The tips 
are first relaxed at 0K using molecular statics simulations to reduce surface energy. 
Subsequently H atoms are placed on the tip surface to terminate unsaturated C bonds. 
After H passivation, the tip is gradually heated to and equilibrated at 300K. The size of 
the diamond samples used in our simulations increases with the tip size. The largest 
sample for R = 30 nm is comprised of 4,981,800 atoms and has dimensions of 49.9 nm × 
48.0 nm × 12.2 nm. In all cases we perform simulations on the (111) diamond surface, 
which is fully passivated with H and equilibrated at 300K prior to bringing it in contact 
with the tip. The bottom four layers in each sample are held rigid during simulations of 
normal loading and lateral sliding. Langevin thermostat is applied to a 1 nm thick layer of 
atoms, which is adjacent to the rigid layers. Periodic boundary conditions are applied in 
both lateral directions. Similar combination of rigid and thermostat layers is applied to 
the tip. The tip is moved by incrementally displacing atoms in the rigid layer and 
allowing the remaining atoms to relax dynamically.  

Simulations of normal loading are performed at 300K by alternating loading and 
holding phases. In the loading phase, the tip is displaced toward the sample in the 
increments of 0.25 Å and 0.1 Å for the non-adhesive and adhesive cases, respectively. 
The holding phases last 10 ps and 6 ps, respectively, which is long enough for transient 
forces to decay and which corresponds to the average indentation speeds of 2.5 m/s and 
1.7 m/s. Friction simulations are performed only for the R = 30 nm tip because such 
simulations are computationally very expensive. At each normal displacement, the tip is 
moved over the sample in the  direction, parallel to the sample surface. The sliding 

velocity is 20 m/s, which is comparable to the operating conditions in micromechanical 
systems (MEMS), but which is much larger than the typical velocity in scanning force 
microscopy (SFM) experiments. Bridging the gap in velocities between MD and SFM 
still remains one of the outstanding challenges in the field. Nevertheless, our simulation 
results are validated by the fact that they reproduce experimental shear strengths, contact 
pressures, and other parameters as discussed in the main text. In simulations of sliding we 
record the forces in lateral and normal directions. A stick-slip behavior is observed with 
the periodicity of the diamond surface of the sample. We calculate normal and friction 
forces by averaging them over each lattice period of the surface lattice. We report values 
averaged over several lattice periods and the single-period averages are used to calculate 
standard deviations and error bars. 
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Finite Element Analysis 

Our tips [Fig. S1] and samples have finite sizes and it is important to determine 
what effect such geometry will have on contact behavior. We performed finite element 
analysis (FEA) on systems of two linear-elastic bodies with the same geometry, size, 
boundary conditions, and elastic properties as in our MD simulations. FEA calculations 
are done using the ABAQUS software. Loading in FEA is carried out in the same 
displacement increments as in non-adhesive MD simulations. The contact area vs. load 
relations obtained in FEA show less than 3% deviation from prediction of the Hertz 
model for all tip radii. The FEA results demonstrate that the effect of the finite system 
size, tip geometry, and boundary conditions in our MD simulations is negligible. Hence 
any deviations from continuum models observed in our MD simulations are due to the 
atomic discreteness. 

Fitting to Single-Asperity Continuum Models 

 In the main text we discuss fitting of simulation data to continuum contact models. 
In the case of non-adhesive interfaces, we fit the single asperity contact area Aasp vs. load 
data with a power law function and we compare the results to the Hertz model: 
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where R is the tip radius, L is the applied load, and E* is the effective elastic modulus, 
defined as: 
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In the above equation E1 and E2 are the tip and the sample Young’s moduli, and ν1 and ν2 
are the tip and the sample Poisson’s ratios, respectively. Using Eq. S3 we estimate E* to 
be equal 303 GPa. Elastic constants that enter this equation were directly calculated in 
separate MD simulations and they are: for diamond E2 (111) = 1330 GPa and ν2 = 0.11; 
for amorphous carbon E1 = 348 GPa and ν1 = 0.33. On the other hand if we fit the 
simulation data to Eq. S2 for R = 30 nm tip, we obtain E* = 134 GPa, which means that 
Hertz model underestimates the effective modulus by 61%. 
 In the case of adhesive contacts we fitted the simulation data to the Maugis-
Dugdale model4. Because this model does not have a simple analytical form to relate 
contact radius a to load L, we use an approximation to this model developed by Carpick, 
Ogletree, and Salmeron (COS)5. Assuming 

€ 

Ff = τ πa2( ), the COS fitting equation takes 
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where 

€ 

Ff0 = τ πa0
2( )  is the friction force at zero load, a0 is the contact radius at zero load, 

Lc is the pull-off force, and α is a transition parameter. Using procedure described in Ref.5, 
α can be related to the Tabor’s parameter: 

€ 

µT =
Rγ 2

E *( )2 z03
 

 

 
 

 

 

 
 

1/ 3

, (S5) 

where γ is the work of adhesion and z0 is the equilibrium separation of the surfaces in 
contact. Tabor’s parameter describes a transition between two limits of contact behavior: 
from Johnson-Kendall-Roberts6 (JKR) limit (for large tips and compliant materials with 
strong, short-range adhesion) to Derjaguin-Müller-Toporov7 (DMT) limit (for small tips 
and stiff materials with weak, long range adhesion). Work of adhesion γ can be calculated 
from the pull-off force using expression , where χ ranges from 1.5 (JKR 
limit) to 2 (DMT limit).  

We fitted the COS expression to our simulation data to calculate shear strengths 
and we compared the results to analogous calculations carried out on experimental data.8 
For the simulated R = 30 nm amorphous carbon tip with the measured pull-off force Lc = 
24.88 nN, the COS fit yields 

€ 

Ff0
= 3.23 nN  and 

€ 

α = 0.21. The COS model provides also 
a method to calculate work of adhesion γ based on the known values of Lc, R, and α and 
subsequently to calculate a0 based on the known values of γ, E*, R, and α. We estimated 
E* using Eq. S3. Finally, based on a0 and 

€ 

Ff0 , shear strength τ can be calculated using the 
relation 

€ 

Ff0 = τ ⋅ πa0
2( ). This procedure applied to our simulation data yields τ = 508 MPa. 

This value is in a very good agreement with the experimentally observed range of shear 
stresses of 201 MPa to 485 MPa obtained with a slightly larger tip (radius of 

€ 

R = 45 nm).  
The value of 

€ 

α = 0.21 obtained from fitting of the COS model to our simulation 
data corresponds to the Tabor’s parameter µT = 0.19. We compared this value to the range 
of values of the Tabor’s parameter calculated for our system directly from theory, i.e., we 
used Eq. S5. The upper limit of µT is estimated to be 0.22. Here we assumed the JKR 
model (χ = 1.5), which assumption allows us to calculate γ, and we set z0 = 0.1 nm (equal 
to the H-H bond length). The lower limit µT = 0.17 was estimated by assuming the DMT 
model (χ = 2) and by setting z0 = 0.17 nm (equal to the cut-off of the H-H interaction in 
our force field). This analysis demonstrates that the Tabor’s parameter µT calculated from 
fitting continuum contact models to our simulations is in an excellent agreement with 
theoretical predictions made by these models. 
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Applicability of Macroscopic Roughness Theories to Nanoscale Contacts 

In the main text we argue that continuum mechanics does not capture the correct 
physics of nanoscale contacts because such contacts are atomically rough. In this section 
we demonstrate that our results for nanoscale contacts are consistent with roughness 
theories, when contact area is defined in terms of atomic interactions. 

A number of theories have been proposed to describe mechanics of rough contacts. 
One such approach, developed by Greenwood and Williamson (GW)9, represents a 
surface as a sum of single asperities (protrusions), which are elastically decoupled from 
each other. Each asperity deforms according to the Hertzian mechanics, all asperities 
have the same radius of curvature, and the height distribution of asperities follows the 
Gaussian distribution. The GW model successfully predicts the widely observed linear 
relationship between the contact area and the normal load in macroscopic contacts. 
However, the GW model suffers from its oversimplified assumptions. For instance 
ignoring the elastic coupling between asperities is not physically justified. The GW 
model also requires defining the relevant roughness length scale a priori and it relies on a 
relatively ambiguous definition of an asperity. Other criticisms of the GW model 
encountered in the literature include its necessity to define a specific height distribution 
and a uniform size of the asperities10-12. In the last decade, an entirely different approach 
to contact of randomly rough surfaces has been proposed by Persson11-14. In this theory, 
the autocorrelation function of the surface height profile determines the pressure 
distribution and the area of contact. A major advantage of Persson’s approach is that it 
treats multiple length scales of roughness simultaneously, i.e., no roughness length scale 
is excluded. A critical review of Persson’s theory can be found in Ref.15 

To confirm the applicability of roughness theories to nanoscale contacts, we 
tested predictions of these theories against the results of our MD simulations. First of all, 
both the GW and Persson’s theories predict that contact area is proportional to the normal 
load. This prediction is consistent with the results of our simulations as shown in Fig. 2a 
in the main text. In addition, Persson’ theory predicts that pressure distribution in rough 
contacts can be described by a double Gaussian formula,  

, (S6) 

where p0 and σ are the peak and width of the Gaussian distributions, respectively. 
Furthermore, this pressure distribution should not change with the applied load in the 
regime of low loads. In our simulations we define the real contact area Areal to be 
proportional to the number of atoms interacting across the interface. The nominal contact 
area Aasp between the SFM tip and a sample is defined by the edge of the contact zone. 
The effective radius of the nominal contact (defined as
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Aasp π ) is small compared to the 

radius of curvature of the modeled SFM tip. As a result, the shape of the tip does not vary 
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significantly in the contact region and it is appropriate to use Persson’s model, which was 
derived for flat surfaces in contact. If our results are consistent with Persson’s predictions, 
then pressure distribution calculated for atoms interacting across the interface can be 
approximated by Eq. S6. To test this hypothesis, we calculated pressures for atoms in 
contact using a virial theorem16. A thermally averaged pressure distribution for the 30 nm 
tip and normal load L = 48 nN is shown in Fig. S2 [diamond symbols]. The solid line 
represents a fit to Eq. S2 and it shows that our data can be well approximated by the 
double Gaussian distribution predicted by Persson. The small deviations from analytical 
predictions observed at the tail of the distribution have been also reported in the 
numerically exact calculations of Campaña et al.17, who used Green’s function molecular 
dynamics to study contact mechanics of rough self-affine surfaces. These deviations are 
likely due to the fact that Persson’s theory is not exact. Systematic corrections to this 
theory have been recently proposed by Müser18.  

Finally, we tested the prediction that at the early stages of normal loading pressure 
distribution in rough contacts is independent of the load. We fitted the double Gaussian 
function [Eq. S6] to normalized pressure distributions obtained in MD simulations at 
different loads. The center p0 and the standard deviation σ of the distributions are plotted 
as a function of load in Fig. S3a and Fig. S3b, respectively. The error bars correspond to 
95% confidence intervals for the fitted values. Both the center (p0) and the width (σ) of 
the distributions are constant within the error bar of our calculations. As an additional test, 
we selected two distributions with the lowest and the highest values of p0 and we 
performed a test of a statistical hypothesis that the two distributions are the same. Similar 
test was performed for loads with the lowest and the highest value of σ. No statistically 
significant difference could be found between these distributions. The invariance of 
pressure distribution under varying load is consistent with macroscopic roughness 
theories.  
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Supplementary Figure. S2. Pressure distribution of atoms in contact. Measurements 
are taken for a tip with the radius of curvature equal 30 nm and at a normal load of 48 nN. 
Diamond symbols correspond to the results of MD simulations. Solid line is a fit to Eq. 
S2 (The quality of the fit R2=0.946).  
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Supplementary Figure. S3. Parameters of the double Gaussian pressure distribution 
(Eq. S6) as a function of the applied load. a, Mean value p0 and b, standard deviation σ. 
Error bars in a and b correspond to 95% confidence intervals of the best fit values 
calculated for pressure distributions at each load. Horizontal lines correspond to the 
average values of p0 and σ. 
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