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Supplementary Information

Experimental Calibrations

The classical limit |S| ≤ 2 for the CHSH experiment is
derived with very minimal assumptions. These include
the reproducibility of the measurement axes a, a, b, and
b, the space-like separation and thus independent mea-
surement of the particles (basis for locality loophole), and
the completeness of the ensemble measurement (basis for
detection loophole). But the derivation is, for example,
not based on any assumptions about the actual state of
the particle pair before separation, the choice of mea-
surement axes, or even the coherence of the states or
fidelities of the measurement as long as all introduced
errors act on the individual qubits and do not introduce
correlations. Thus, it is possible to calibrate almost all
parameters describing the experiment with a global op-
timization process that maximizes the Bell signal |S|.

In our experiment, these parameters include all num-
bers describing the sequence shown in Fig. 1e, including
the phase, frequency, and shape of the initial π-pulse,
the shape of the pulses that sweep the qubits into res-
onance with the resonator, and even the shape of the
measurement pulses, while ensuring that the two qubits
are kept off-resonance from the resonator to avoid further
coupling. The optimal values for most of these param-
eters depend on sample properties such as the coupling
strengths between the qubits and the resonator, and are
thus not predictable in a useful way. However, the opti-
mal rotation angles for the measurement, i.e. the mea-
surement axes, are predicted, although not uniquely, by
quantum mechanics and can thus be used to verify the
optimization process.

Quantum mechanics predicts a maximal violation, for
example, using measurement axes in the y− z plane that
form angles from the z-axis of a = −135◦, a = 135◦,
b = 0◦, and b = 90◦. Our optimization resulted in angles
of a = −149◦, a = 156◦, b = 1◦, and b = 92◦, with
relative azimuthal angles between planes (a, a) and (b, b)
as shown in Fig. 3 of the main text. Given the other non-
idealities of the experiment and the fact that, around
the maximum, the measured value of S depends only
to second order on these angles, this good match with
theory makes us confident that the optimization found a
sensible solution. This confidence is supported further by
the fact that several different optimization schemes yield
parameters that are consistently close to these.

Measurement Crosstalk

As measurement crosstalk poses the greatest challenge
to our experiment, we devised a sensitive test to quantify
this error mechanism. This test consists of keeping one
qubit in the |0 state while driving a Rabi oscillation on

the other qubit. If the qubits are kept off resonance from
the resonator and each other during this experiment, the
qubit in the |0 state should ideally remain unaffected
by the state of the other qubit. However, measurement
crosstalk does cause a small oscillation on the measured
state populations of the inactive qubit at the same fre-
quency as the Rabi oscillation on the other qubit. Thus,
a comparison of the Fourier amplitudes of the observed
oscillations in the state populations of the two qubits
yields a direct number for the strength of the measure-
ment crosstalk. Fig. 1 shows the data resulting from
the experiment and yields a value for the measurement
crosstalk pa

c = 0.59% from qubit A to B and pb
c = 0.31%

from qubit B to A.
This crosstalk leads to a correction in the limits on the

Bell signal dictated by a local hidden variable theory [1]:

−2 + 4 min{pa
c , pb

c} ≤ S ≤ 2 + 2
pa

c − pb
c

 (1)

Using the values for the measurement crosstalk in our
sample, we find the new classical limit to be:

−1.9876 ≤ S ≤ 2.0056 (2)

This correction is small enough to not challenge our claim
of a violation.

Statistical Analysis

For the measured Bell signal to carry statistical mean-
ing, it needs to be supplemented with an estimate of
its standard error. As S is determined by sampling the
multinomial distributions that describe the qubits’ state,
the standard error on S is dominated by statistical sam-
pling noise for small sample sizes. As the sample size
increases, though, the error on S shows more and more
influence from experimental drifts and 1/f noise. The
estimation of the standard error for large sample sizes
therefore requires a noise and drift model that accounts
for these experimental systematic errors.

To circumvent this, we divided the entire data set into
sections, each of which is small enough to be dominated
by statistical sampling noise. For this, we analyzed the
internal variance in our dataset, as shown in Fig. 2 to de-
termine the maximum acceptable section size. We found
that for sections of up to 1.55 million samples, or about 20
minutes’ worth of data taking, the variance is sampling-
noise-limited, allowing us to employ standard statistical
analysis techniques to estimate the standard error on S
for each section. We therefore divided our data set of 34.1
million samples into 22 sections that produce violations
with values of S ranging from 2.0666 to 2.0806 and stan-
dard errors around 0.0014, corresponding to violations
by about 50 standard deviations. These standard errors
can be used in one-sided hypothesis tests to estimate the
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FIG. 1: Quantifying measurement crosstalk: Measurement crosstalk can be quantified by driving a Rabi oscillation on one
qubit and observing the other qubit’s response. Fourier transforming the data allows the isolation of the relevant features. (a)
Rabi oscillation for qubit A (blue). The measured state of the qubit B (red) only shows a very weak dependence on whether
the qubit A is in the |1 or |0 state. Here, x represents a sum over the probabilities for 0 and 1. (b) Fourier transform of (a).
The ratio of the responses of the two qubits at the same frequency as the Rabi oscillation on A gives the measurement crosstalk,
here 0.191/61.08 = 0.31%. (c) Rabi oscillation for qubit B (red); qubit A in blue; x represents a sum over the probabilities for
0 and 1. (d) Fourier transform of (c): Data shows 0.419/70.91 = 0.59% for measurement crosstalk.

certainty with which each respective section indicates a
non-classical Bell signal. The 22 sections are combined to
yield an overall certainty (1−1.27×10−26253), expressed
mathematically as

P (S ≤ 2.0) =
22

i=1

P (Si ≤ 2.0) (3)

=
22

i=1

erfc
Si − 2.0

σi
(4)

= 1.27× 10−26253 . (5)

A corresponding standard error σtot can be inferred from
the relation

erfc
Stot − 2.0

σtot
= P (S ≤ 2.0) , (6)

from which we arrive at our final violation claim of 244
standard deviations.

Quantum Simulation and Sample Performance
Parameters

To further verify the experiment, we employed quan-
tum simulations to predict the Bell signal. For the pur-
poses of the simulation, the resonator is treated as a third
qubit, which is acceptable in the special case of this ex-
periment since the entire quantum circuit never contains
more than one photon while the qubits are coupling to the
resonator. The state of the system is then expressed by
an 8× 8 density matrix in the basis of the system’s eight
states |000, |001, |010, . . . , |111. Rotation operations
on the qubits are simulated via the matrix exponentials
of the appropriate Pauli matrices, e.g. a 90◦ x-rotation
on qubit A would be simulated using

ρout = ei π σx⊗I⊗I/4 ρine−i π σx⊗I⊗I/4 (7)
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FIG. 2: Standard error analysis: As the sample size increases, the standard error of the estimated mean changes from being
dominated by statistical sampling noise (red line) to being dominated by 1/f drift in the experiments (green line). The point
where the two lines cross gives the maximum sample size that can be statistically analyzed in a meaningful way, without
modeling drifts and 1/f noise in the experiment.

Coupling operations are simulated using matrix exponen-
tials of the coupling matrix

C =




0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0


 (8)

For example, a swap operation between the resonator and
qubit B is simulated using

ρout = ei π I⊗C/2 ρine−i π I⊗C/2 (9)

Single qubit decoherence and dephasing are added
by applying the operations in small steps interleaved
with the Kraus operators [2] that relax or dephase the
state. Measurement errors are included by modelling
them with a classical probability to misidentify the in-
dividual qubits’ states.

Using just the single qubit and resonator performance
characteristics T1, T2, F0, and F1 as shown in Table I and
assuming that the coupling operation is ideal, we were
able to explain our data with very high fidelity. From
this we conclude that efforts to improve our system need
to be focused primarily on single qubit performance.

It is important to note that the quantum simulations
did not contain any fit parameters, and were instead
based solely on the actual sequence parameters and the
numbers in Table I, which in turn were measured directly
using standard decay and Ramsey techniques. The mea-
surement fidelities, specifically F1, were somewhat non-
trivial to measure well without assumptions about other

experimental fidelities. We devised an experiment based
on multiple pulse-amplitude-driven Rabi oscillations as
shown in Fig. 3. With this method, we found the high-
est measurement fidelities ever reported in phase qubits:
93.5% and 94.6% as shown in Table I – well above 90%
and within a few percent of the theoretically expected
maximum of 96.6%.

Experimental Data and Measurement Correction

Since the reduced measurement visibilities classically
affect the two qubits independently and do not introduce
correlations into the measurement, it is theoretically ac-
ceptable to correct our data for these errors to estimate
the Bell signal that we would have obtained with perfect
fidelities. Table II shows the raw state probabilities ob-
served in our experiment on which the violation claim in
this paper is based. Table III shows the corrected state
probabilities and the resulting estimated Bell signal for
ideal measurement. The observed number matches the
simulated value of S = 2.337 very well.

We provide this corrected value of S not to claim a
larger Bell violation, but instead as a benchmark of the
fidelity of the quantum operations we performed on the
qubit pair. The separation between quantum operations
and qubit readout is useful, in our opinion, as the number
of quantum operations required to implement any sig-
nificant quantum calculation will probably outscale the
number of required qubit readouts.
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FIG. 3: Visibility analysis (composite of several data sets). Blue dots represent data, red lines are fits through the data, and
green lines are fits through the extrema of the red lines. The upper parabolas correspond to Rabi oscillations driven with pulses
at fixed length and increasing amplitude around the point where they yield a π-pulse. The bottom parabolas are Rabis driven
around pulse amplitudes that yield a 2π pulse. The horizontal dataset at the bottom corresponds to no drive on the qubit.
The green fits through the parabolas’ extrema (optimal π or 2π pulses) give the measurement visibility when extrapolated to
t = 0, i.e. to an optimal, instantaneous pulse. The horizontal line checks the method by providing a direct measurement of the
|0 state visibility. Since the measurements agree to high precision, the method can be trusted to extract a |1 state fidelity, for
which no direct measurement is available. Results are for (a) Qubit A: F0,Rabi = 96.86%, F0,direct = 97.04%, F1 = 96.32%,
and (b) Qubit B: F0,Rabi = 96.06%, F0,direct = 96.18%, F1 = 98.42%.

Outlook: Potential Closure of Locality Loophole

Even though the locality loophole was not closed in
this experiment due to the close proximity of the qubits
during measurement, we believe that the fast measure-
ment process (30 ns) based on separate readout channels
for each qubit should, in principle, allow closure of this
loophole in a future extension of the experiment. For this,
the qubits would have to be located at least 10m apart,
which should be achievable by placing them in two sepa-
rate refrigerators connected with a cold superconducting
bus. Entanglement via “flying qubits” would have to be
developed and qubit coherence times would have to be
improved to obtain simultaneous measurement (Delay =
0ns) and to maintain the entanglement “in flight”.

For a true closure of the loophole, many other tech-
nological challenges will need to be met along the way,
including a fast, truly random source of classical bits that
determine the measurement axes after qubit separation.
But we believe that none of these issues pose an unsur-
mountable obstacle.

Errata and a Global Test of Measurement Crosstalk

After publication, Alicki pointed out there exists an-
other important “global” check for the effects of measure-

ment crosstalk [3]. This check led to our discovery of a
labeling error in Table II and III between P10 and P01,
which has been corrected in this revision.

The idea of this check is that the measurement of only
one qubit should be independent of the measurement axis
of the second qubit. Defining P1x = P10 + P11, we ex-
pect to find for the measurement in axis a of only the
first qubit no difference in the probability δP1x(a) =
|P1x(ab) − P1x(ab)| = 0, for example. For the four pos-
sible comparisons, we find our data of Table II yields

δP1x(a) = 0.0063 (10)
δP1x(a) = 0.0088 (11)
δPx1(b) = 0.0002 (12)
δPx1(b) = 0.0003 . (13)

All of the differences in probability are small, and of order
the measurement crosstalk obtained previously.

A modified bound on S can be obtained by summing
these differences and multiplying by two [3], giving a new
Bell inequality S ≤ 2.03. Our measured S still violates
this inequality by many standard deviations.

We note that the differences in probabilities for a and
a are much larger than for b and b. Although detailed
experiments would have to be performed to completely
understand this effect, we believe it is probably due to
the axis angles for a and a being very similar.
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TABLE I: Performance parameters for qubits . T1 and T2

are the qubit energy and phase relaxation times, Tϕ the pure
phase decoherence time, F0 and F1 the measurement fideli-
ties for the |0 and |1 state measurements, Fm the combined
measurement fidelity Fm = 1− (1− F0)− (1− F1).

Parameter Value
Qubit A:
T1 296 ns
T2 135 ns
Tϕ 175 ns
F0 97.04%
F1 96.32%
Fm 93.36%
Qubit B:
T1 392 ns
T2 146 ns
Tϕ 179 ns
F0 96.18%
F1 98.42%
Fm 94.60%
Resonator:
T1 2, 552 ns
T2 ∼ 5, 200 ns
Tϕ ∼ ∞
Coupling:
Qubit A ↔ resonator 36.2MHz
Qubit B ↔ resonator 26.1MHz
Measurement Crosstalk:
Qubit A → qubit B 0.31%
Qubit B → qubit A 0.59%

TABLE II: Bell violation results, showing probabilities of
state measurement and their correlation E for the four dif-
ferent measurement axes. The corresponding Bell signal is S.

Parameter ab ab ab ab

P00 0.4162 0.3978 0.1046 0.3612
P10 0.1575 0.1759 0.3700 0.1136
P01 0.0852 0.0731 0.3904 0.1185
P11 0.3412 0.3531 0.1350 0.4066

E 0.5147 0.5019 -0.5208 0.5358

S 2.0732

TABLE III: Bell violation results, corrected.

Parameter ab ab ab ab

P00 0.4406 0.4213 0.0900 0.3813
P10 0.1343 0.1539 0.3790 0.0880
P01 0.0726 0.0599 0.4166 0.1092
P11 0.3525 0.3649 0.1145 0.4215

E 0.5862 0.5724 -0.5911 0.6055

S 2.3552
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