
SUPPLEMENTARY INFORMATION

1www.nature.com/nature

doi: 10.1038/nature08814

Supplementary Information

I. SUPPLEMENTARY FIGURES
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Supplementary Figure 1: (color online) Equations of
state of the trapped unitary gas. (a) Comparison
between our EOS E/NEF as a function of S/NkB

(black dots) and the EOS measured in [2] (open red
squares). The red solid line is the second-order virial
equation of state. (b) Comparison between our EOS
E/E0 as a function of (T/TF )

0 (black dots) and the
EOS measured on 40K in [1] (open red squares). The

grey regions correspond to the superfluid phase.

II. SUPPLEMENTARY DISCUSSION

A. Equation of State of the Trapped Unitary Gas

In this work, we have measured the equation of state
of the homogeneous unitary gas. We can deduce from
our data the EOS of the trapped balanced unitary gas,
which has been measured in [1, 2].

Using the local density approximation, the total atom
number N =

�
ndr3 is expressed as a function of the

temperature T and the chemical potential µ0 at the cen-
ter, involving the function h(1, ζ):

N =
−2√
π

�
kBT

�ω

�3 �
∞

ζ0

d log1/2(ζ/ζ0)

dζ
f5/2(−ζ−1)h(ζ)dζ,

(1)
where ζ0 = exp(−µ0/kBT ) and ω = (ω2

rωz)
1/3. We

use for the calculation a discretized version of (1) taken
solely on our experimental values of h, i.e. without us-
ing any interpolating or fitting function. Similar ex-
pressions are used to calculate the Fermi temperature
EF = kBTF = �ω(3N)1/3, the total entropy S and en-
ergy E of the cloud. The equation of state E/NEF as a
function of S/NkB , displayed in Supplementary Fig.1a,
is in very good agreement with [2].

The normal-superfluid phase transition for the trapped
gas occurs when at the trap center ζ0 = ζc =

exp(−(kBT/µ)−1
c ), with (kBT/µ)c = 0.32(3), as mea-

sured on the homogeneous EOS h(1, ζ). At this point
we get (T/TF )c = 0.19(2), (S/NkB)c = 1.5(1) and
(E/NEF )c = 0.67(5).

In order to make the comparison with [1], we also
express the equation of state E/E0 as a function of
(T/TF )

0, where the superscript 0 refers to the quan-
tities evaluated on a non-interacting Fermi gas having
the same entropy (Supplementary Fig.1b). The good
agreement with the measurement in [1], performed on
40K clouds, illustrates the universality of the unitary gas.

B. Physical interpretation of the pressure in the

normal mixed phase

We have shown that the pressure in the normal mixed
phase can be described as the sum of the Fermi pressures
of ideal gases of majority atoms and of polarons:

P =
1

15π2

�
2m

�2

�3/2
�
µ

5/2

1
+

�
m∗

p

m

�3/2

(µ2 −Aµ1)
5/2

�
.

(2)
Here, we evaluate the corresponding canonical EOS re-
lating the energy E to the densities n1, n2, in order to
compare with the Fixed Node Monte Carlo prediction
[3]. Since at unitarity we have E = 3PV/2 [4], we just
express the chemical potentials in terms of densities by
using the thermodynamical identities ni = ∂µi

P , which
yield respectively:

n2 =
1

10π2

�
2m∗

�2
(µ2 −Aµ1)

�3/2

(3)

n1 =
1

10π2

�
2mµ1

�2

�3/2

−An2. (4)

The last term in equation (4) clearly indicates the in-
creased majority density due to the presence of the mi-
nority component. Expressing the pressure as a function
of ni in (2) yields the energy:

E = EFP

�
(1 +Ax)

5/3
+

m

m∗
x5/3

�
,

where EFP is the energy of the fully polarized gas and
x = n2/n1. Expanding E to order x2 finally leads to an
expression similar to that obtained in [3]:

E(x) = EFP

�
1 +

5

3
Ax+

m

m∗
x5/3 +Bx2 + ....

�
,

with B = 5A2/9 = 0.2. Our value of B is close to the
calculated value B ≃ 0.14 from [3].
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C. Trap Anharmonicity

First, in the axial direction z, the confinement is pro-
duced magnetically and the corresponding anharmonic-
ity is negligible. In the radial direction, we develop the
gaussian potential to fourth order around ρ = 0:

Vr(ρ) = V0

�
1− exp

−ρ2

σ2

�
≃ 1

2
mω2

rρ
2 + ǫρ4,

where mω2
r = 2V0/σ

2 and ǫ = −V0/2σ
4. In the balanced

case, we have

n(z) =

�
d2ρn

�
µ0 − 1

2
mω2

zz
2 − 1

2
mω2

rρ
2 − ǫρ4

�
.

Introducing n = ∂P/∂µ and defining u = mω2
rρ

2/2+ ǫρ4

we obtain, to lowest order,

mω2
r

2π
n(z) = P (µz) +

�
∞

0

P (µz − u)
du

V0

.

The error on the measurement of h is then

mω2
r n(z)

2πP1(µz, T )
−h(1, ζ) =

kBT

V0

�
∞

ζ

f5/2(−ζ ′−1)

f5/2(−ζ−1)

h(1, ζ ′)

ζ ′
dζ ′.

(5)
We evaluate the integral in (5) using the experimental
values of h(1, ζ). In our shallowest trap, the worst case
anharmonicity effect is 5%.

D. An exact inequality on the equation of state of

an attractive Fermi gas

Writing the hamiltonian as �H = �H0 + �U , where �H0 is

the single-particle part of the hamiltonian and �U is the

inter-particle interaction, one has the general inequality
Ω ≤ Ω0+�V �0, where Ω0 is the grand potential associated

with �H0 and �·�0 is the thermal average related to �H0 [5].
Taking for U a short range square potential of depth U0 <
0 recovering the true scattering length, one has trivially

��V �0 < 0, hence Ω ≤ Ω0. Using the thermodynamic
identity Ω = −PV , and recalling that Ω0 = −2P1V and
h = P/P1, we finally get the inequality

h(1, ζ) ≥ 2.

E. Extension to a Multi-Component System

We extend the equation (2) to a mixture of species i,
of mass mi, trapped in a harmonic trap of transverse
frequencies ωri, following the calculations in [6]. Us-
ing Gibbs-Duhem relation at a constant temperature T ,
dP =

�
i nidµi, then

�

i

miω
2

ri

2π
ni =

� �

i

miω
2

ri

2π
dxdy

∂P

∂µi
=

� �

i

dµi
∂P

∂µi
,

where we have used local density approximation (µi(r) =
µ0

i − V (r)) to convert the integral over space to an inte-
gral on the chemical potentials. The integral is straight-
forward and yields to

P (µiz, T ) =
1

2π

�

i

miω
2

rini(z).
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