doi: 10.1038/nature09204 nature

Part 1. Supplementary Methods

Data Processing and Analysis. Mass spectral data was processed using CompPASS, as previously described with modifications discussed below. Briefly, Sequest summary files were processed into a high threshold dataset based on a 2% protein false-positive rate by keeping the XCorr thresholds for each charge state constant while varying the Δ Cn (thresholds: XCorr 2+ ≥ 2.5; XCorr 3+ ≥ 3.2; XCorr 4+ ≥ 3.5; +1 charge states were not collected). These processed data sets were merged for each duplicate run and used to populate a "stats table" consisting of each dataset for the AIN as well as 102 unrelated (Dubs proteins and their selected HCIPs1: https://harper.hms.harvard.edu/CompPASS Dubs.html). The DN-score and Z-score are calculated from total spectral counts (TSCs) for each protein found in association with each bait.

Because *CompPASS* was originally designed for analysis of mostly non-reciprocal datasets, we devised a new weighted D^N-score (WD^N-score) (Supplementary Fig. S2), which aids in the identification of HCIPs that are associated with multiple baits in a network. WD^N-scores were calculated as:

$$WD_{i,j} = \sqrt{(\lambda \omega_j)^p (x_{i,j})}$$
 (Eq. 1)

$$\lambda = \left(\frac{k}{\sum_{j=1}^{nk} f_{i,j}}\right), f_{i,j} = \begin{cases} 1; X_{i,j} > 0 \\ X_{i,j} \end{cases}$$
 (Eq. 2)

$$\mathbf{\omega}_{j} = \left(\frac{\sigma_{j}}{\overline{\mathbf{X}}_{i}}\right), \ \overline{\mathbf{X}}_{j} = \sum_{j=1, j=n \atop k}^{j=k} X_{i,j} \ ; n = 1, 2, \dots m$$
 (Eq. 3)

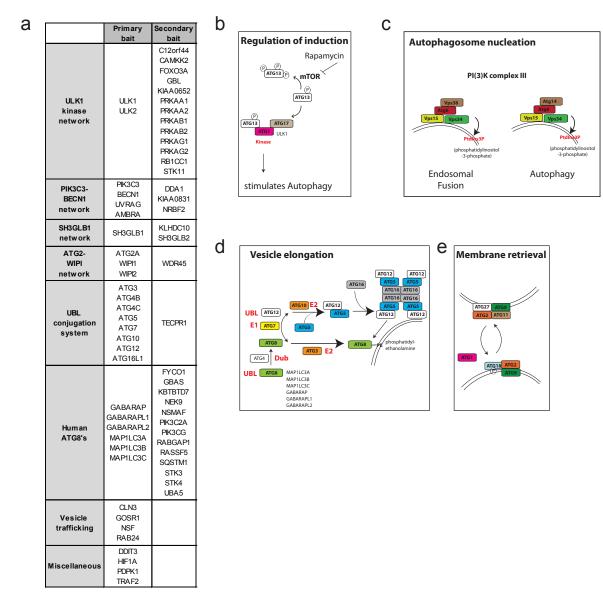
 $X_{i,j}$ = total peptides for interactor j from bait i

$$p = \begin{cases} \text{number of replicates} \\ \text{runs in which} \\ \text{the interactor is present} \end{cases}$$

where ω_j is the weight factor for interactor j (Eq. 3), σ_j is the standard deviation of the TSCs for interactor j and the raw WD-score is divided by the threshold WD-score determined in the same manner as for the D-score described previously ¹. The previously described D-score is Eq. 1 without ω_j . The analyzed files, the primary output from *CompPASS*, were used for all analysis described here. As described below, we found significant interconnectivity in the network. Proteins identified in each LC-MS/MS experiment with a WD^N-scores \geq 1 and a p-value \leq 4.9 x10⁻⁶ are considered HCIPs.

Comparison of HCIP abundance.

In order to compare the abundance of HCIPs found in the wild type and mutant ATG8 protein IP-MS/MS experiments we used the normalized spectral abundance factor (NSAF) approach previously applied to determine the abundance of proteins found in IP-


MS/MS datasets². For each interactor in each IP-MS/MS experiments, the NSAF was calculated and then difference in NSAF values for that protein in wild type control and mutant experiment was determined. In order to plot the data using the \log_2 values of this difference while maintaining the proper sign of the value (positive for increase and negative for decrease), the conventional NSAF was multiplied by 100,000 so that each value was \geq 1 before taking the \log_2 of the difference.

Gene Ontology Analysis of the AIN and ATG8 networks.

Gene Ontology (GO) process analysis was performed on both the HCIPs (WD^N-score > 1.0) from the AIN and separately for the HCIPs from the ATG8 sub network using inhouse software. GO process terms were manually grouped into 25 broad categories for simplicity (Supplemental Table S7). HCIPs from each IP-MS/MS experiment were assigned a broad GO category where a single HCIP could have multiple category assignments, but only 1 per category. A final table of broad GO terms (Using the March 6, 2010 release) and their percentage found across all HCIPs was generated. This was repeated for non-HCIP proteins as well and was used to generate a mean and standard deviation for each broad GO category, representing the values found for each in the background protein dataset. GO term values for HCIPs were compared to these background values and p-values were calculated (Supplemental Fig. S5a). We feel that this method better reflects the enrichment of GO terms in our data rather than using the distributions for GO terms found across the entire human proteome because our IP-MS/MS procedure does not truly randomly sample all proteins in the proteome. Indeed, inspection of GO enrichment for background proteins shows that GO terms relating to canonical background proteins (such as "folding", "translation", and "cytoskeleton") are significantly enriched in our background data when compared to the expected values for the human proteome (Supplemental Fig. S5a).

References

- 1. Sowa, M. E., Bennett, E. J., Gygi, S. P. & Harper, J. W. Defining the human deubiquitinating enzyme interaction landscape. Cell 138, 389-403 (2009).
- 2. Sardiu, M. E. et al. Probabilistic assembly of human protein interaction networks from label-free quantitative proteomics. Proc Natl Acad Sci U S A 105, 1454-1459 (2008).

Figure S1. Autophagy proteins and yeast autophagy signaling modules. a, Primary and secondary baits examined in this study organized by functional class. **b-e**, Diagrams of central signaling pathways in the autophagy system in budding yeast, including the Atg1 pathway (**b**), the Vps34 lipid kinase pathway (**c**), the UBL (Atg8/Atg12) conjugation pathway (**d**), and the vesicle recycling complex involving the transmembrane protein Atg9 and the peripheral membrane proteins Atg18, Atg2, and Atg27 (**e**). Yeast proteins are indicated by symbols. Mammalian orthologs for Atg8 are indicated. Adapted from: Levine, B. and Kroemer, G. (2008) Cell 132, 161.

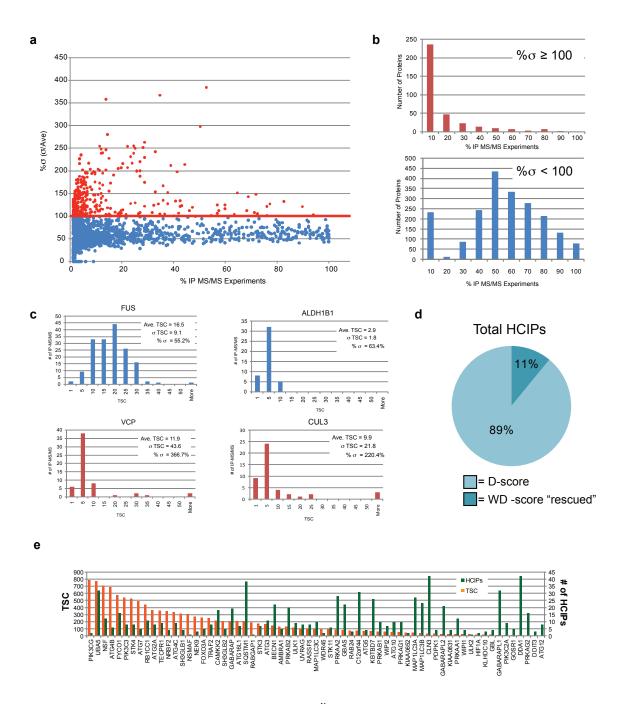
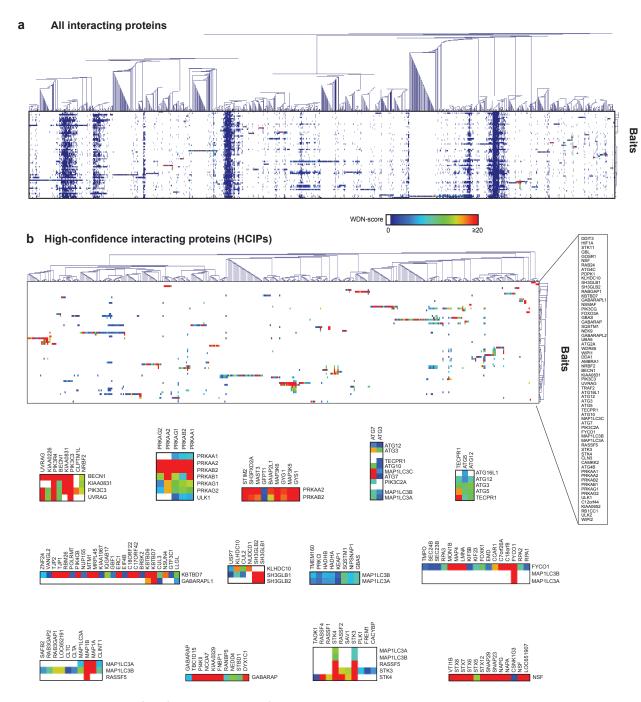
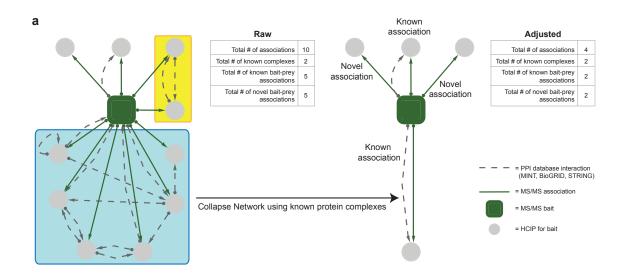
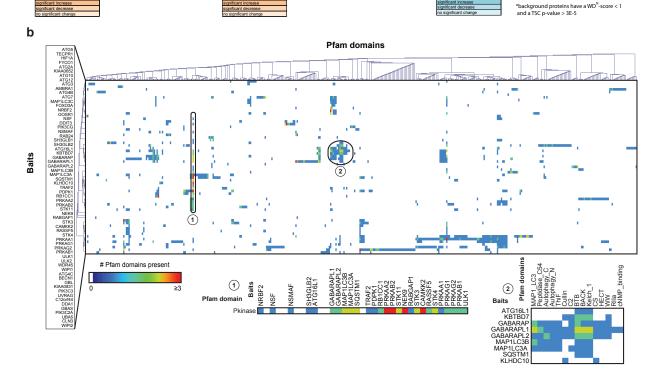
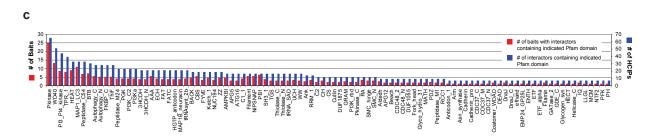




Figure S2. Development of a weighted D^N-score for analysis of proteomic data within a collection of overlapping sub-networks. To better determine likely interacting proteins that are abundant across IP-MS/MS datasets, we developed a weighted D^N-score (WD^N-score) based on the observation that the standard deviation of the TSCs for known common interactors was much higher than that of known background proteins (expressed as %σ in panel a) (see Detailed Methods). b, A closer look at the distribution of proteins with $\%\sigma \ge 100\%$ versus those with $\%\sigma < 100\%$ shows that proteins in this former category are rarely found in multiple IP-MS/MS experiments. c, Examples of proteins known to be background (FUS and ALDH1B1) versus proteins known to be true interactors (VCP and CUL3) shows the differences in the TSC distributions and the large $\%\sigma$ for the known interactors. **d**, Incorporating this information into the weighted D^N-score (see Detailed Methods) allows for 11% more proteins to be considered HCIPs versus using the previously describe D^N-score ¹ indicating that most abundant proteins remain designated as background. e, The total spectal counts (orange) for autophagy network bait proteins are plotted together with the number of HCIPs for each bait (in green) based on WD^N-score.

Figure S3. Global analysis of the autophagy interaction network. a, Heat map generated from hierarchical clustering of the 2553 proteins identified by LC-MS/MS for 65 autophagy network components without filtering via *CompPASS* ¹. The color of the interacting protein in the plot corresponds to its WD^N-score. **b**, Hierarchical clustering of 763 high-confidence interacting proteins after processing via *CompPASS*.


b			
	Type of Interaction	Total Number	
	HCIPs	751	<u> </u>
	Known Protein Complexes (KPC)	84	Raw Network
	Known Bait-KPC Interactions	40	<u>)</u>
	Total Associations	497	1
	Known Bait-HCIP/KPC Associations	68	Collapsed Network
	Novel Bait-HCIP Associations	429	J


Figure S4. Development of a module within *CompPASS* to collapse networks using available protein interaction databases and its application to the autophagy interaction network (AIN). a, Since the nature of the interactions identified in our IP-MS/MS data cannot be determined to be either direct or indirect, we chose to analyze these interactions at a more conservative level by collapsing known multimeric protein complexes (present in BIOGRID, MINT and STRING) into a single representative node. For example, if the 6 proteins known to form a complex are found as HCIPs for a given bait, it cannot be determined to which of these 6 the bait directly interacts. Therefore, rather than reporting 6 interactions for this bait, we report a single interaction to a known protein complex comprised of those 6 interacting proteins. In this manner, we feel that we are not over-representing the number of interactions and can also better report associations with known protein complexes. b, Summary of novel and known interactions found using the *Network Collapse* function in *CompPASS* (panel a).

Supplementary Fig. S5

ATG8 Sub-Network

Argue of Collegory Process | N. Burnard | N. Bestground Proteins | N. Broad GO Category Process | N. Burnard | N. Bestground Proteins | N. Burnard | N. Bu

Supplementary Fig. S5d

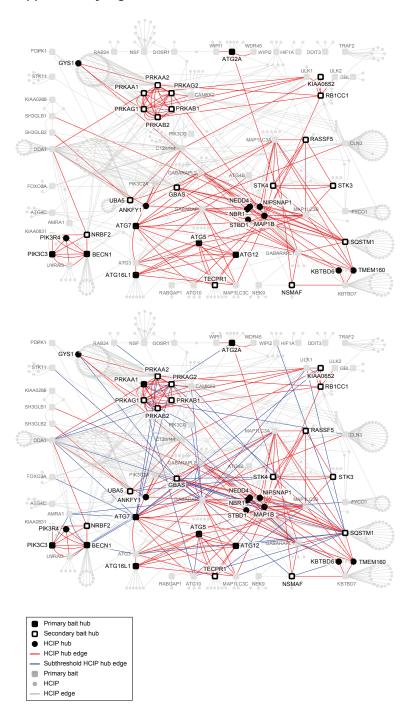


Figure S5. Functional and structural analysis of the autophagy interaction network. a, Enrichment of Gene Ontology (GO) process descriptors for HCIPs (WDN-score ≥1.0, p < 10^{-5}) in the autophagy interaction network (AIN, left panel), the ATG8 sub-network (center panel), and proteins with WDN-scores ≥ 1.0 (right panel). Enrichments were determined as described in the Supplemental Methods section. b, Hierarchical clustering of proteins found associated with 65 bait proteins, with the number of PFAM domains present indicated by the heat map. c, Distribution of PFAM domains found among baits (red bars) and HCIPs (blue bars). d, Analysis of hubs in the AIN. Hubs were identified based on their presence as HCIPs in IP-MS/MS experiments from 3 different baits with WDN-Score ≥3 each and an average WDN-Score ≥2 across all IP-MS/MS experiments in which a hub candidate was present based on TSCs. Primary and secondary bait refers to the classification in Fig 1.

Supplementary Fig. S6

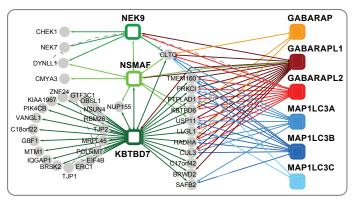
а

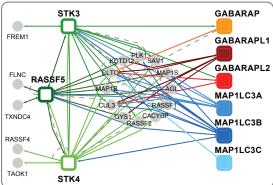
	Bait	HCIPs	Total known # of known PPIs IPs PPIs for bait identified in this		Novel	Reciprocal PPIs	
	Dait	non s		study by LC-MS/MS	PPIs	Potential reciprocal PPIs	Observed reciprocal PPIs
	ATG3	15	3	3	12	10	7
	ATG4B	6	4	3	3	7	4
	ATG5	7	2	1	6	5	4
UBL	ATG7	6	1	1	5	8	6
conjugation	ATG10	18	1	0	18	7	0
system	ATG12	11	14	3	8	6	3
	ATG16L1	8	2	1	7	6	1
	TECPR1	12			12	3	3
	Total	83	27	12	71	52	28

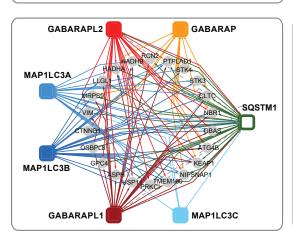
b

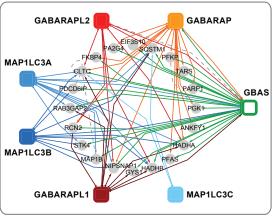
Bait	Interactor	Method	Reference
ATG16L	IKBKG	HT-AC-MS	Bouwmeester 2004
ATG16L	ATG12	HT-AC-MS	Ewing 2008
ATG12	SF3A1	HT-AC-MS	Ewing 2008
ATG12	AUP1	HT-AC-MS	Ewing 2008
ATG12	ATG16L	HT-AC-MS	Ewing 2008
ATG12	SF3B1	HT-AC-MS	Ewing 2008
ATG12	ATG3	AC-W	Tanida 2002
ATG12	ATG10	HT-AC-MS	Ewing 2008
ATG12	ATG5	HT-AC-MS	Ewing 2008
ATG12	PTK2	Y2H	Rual 2005
ATG12	KRTAP4-12	Y2H	Rual 2005
ATG12	MDFI	Y2H	Rual 2005
ATG12	DHX36	HT-AC-MS	Ewing 2008
ATG12	OTUD4	HT-AC-MS	Ewing 2008
ATG12	PLSCR1	Y2H	Rual 2005
ATG3	ATG12	AC-W	Tanida 2002
ATG3	ATG7	AC-W	Tanida 2002
ATG3	GABARAPL2	HT-AC-MS	Ewing 2008
ATG7	atg3	AC-W	Tanida 2002
ATG10	ATG12	HT-AC-MS	Ewing 2008
ATG5	ATG12	HT-AC-MS	Ewing 2008
ATG5	IMPDH2	HT-AC-MS	Ewing 2008
ATG4B	GABARAPL2	HT-AC-MS	Ewing 2008
ATG4B	fbxw11	HT-AC-MS	Sowa 2009
ATG4B	GABARAP	Y2H	Steizl 2005
ATG4B	MAP1LC3B	Y2H	Steizl 2005
ATG4B	C14orf139	Y2H	Steizl 2005

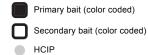
AC-W: affinity capture-western

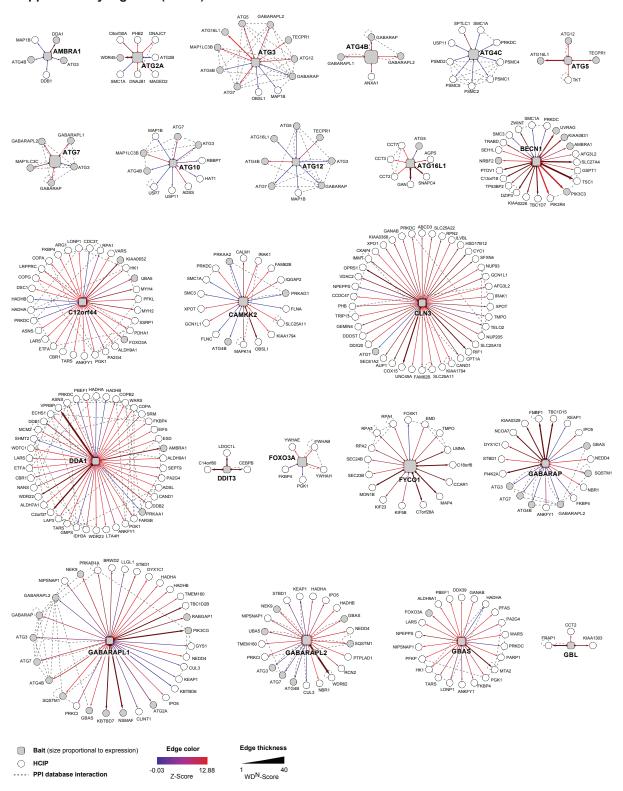

Y2H: yeast 2 hybrid

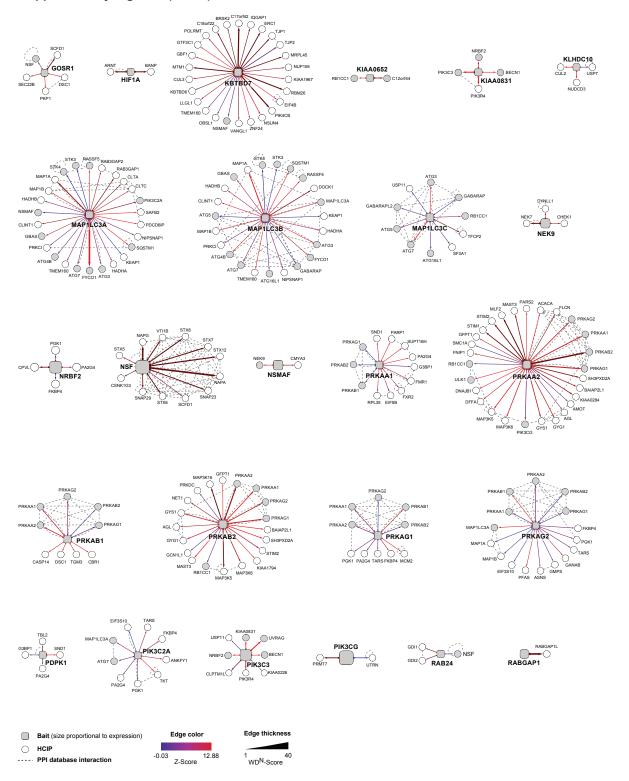

HT-AC-MS: High-throughput affinity capture mass spec


С

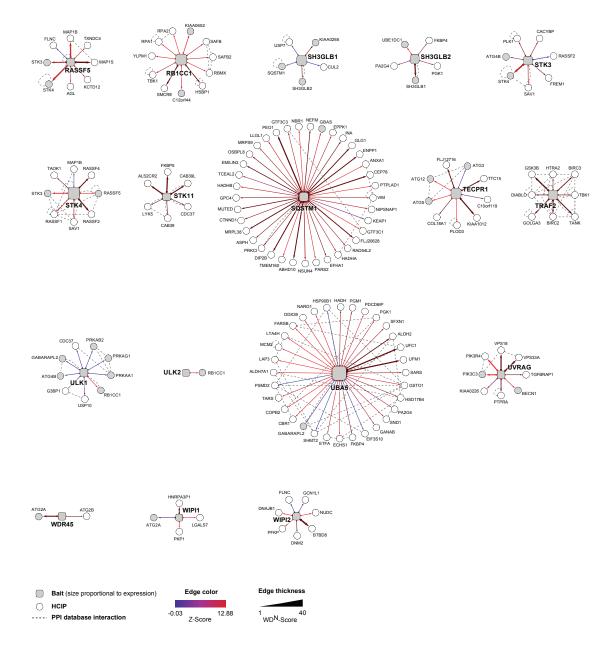

Network	Potential reciprocal PPIs	Observed reciprocal PPIs	
UBL conjugation system	44	21	
ULK1 kinase	35	17	
PIK3C3-BECN1	11	7	
SH3GLB1	2	1	
ATG2-WIPI	2	1	
Total	94	47	

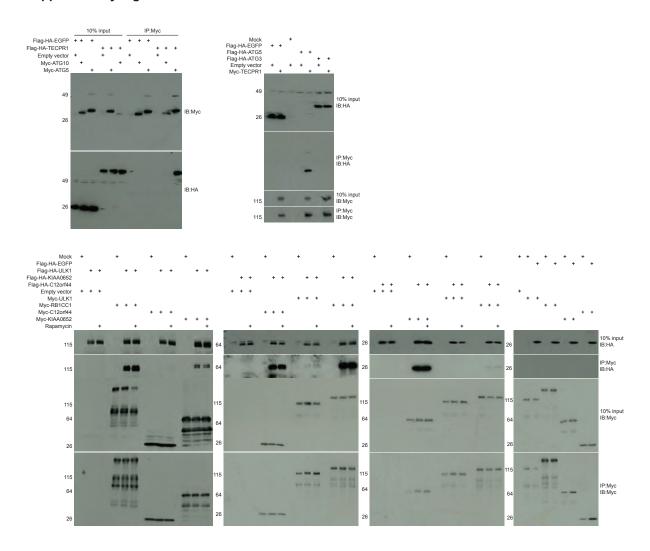

Supplementary Fig. S6d





---- PPI database interaction


Supplementary Fig. S6e (Part 1)


Supplementary Fig. S6e (Part 2)

Supplementary Fig. S6e (part 3)

Supplementary Fig. S6f

Supplementary Fig. S6g

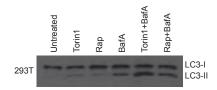


Figure S6. Summary of reciprocal interactions for the AIN and analysis of previously reported interactions for the UBL conjugation system. a, Summary of the LC-MS/MS data for the UBL conjugation system showing the number of HCIPs, number of known interacting proteins in BIOGRID and MINT, and the number of reciprocal interactions observed. b, Summary of previously reported interaction for the UBL conjugation system. c, Summary of reciprocal interactions in the networks presented in Fig. 2 and Fig. 3 determined by LC-MS/MS. d, Merged interaction maps of HCIPs found in ≥ 2 IP-MS/MS experiments among indicated baits. Common interacting proteins with sub-threshold WDN-scores were included if HCIP criteria were fulfilled in ≥ 1 IP-MS/MS experiment. e, Individual interaction maps showing all the HCIPs identified for primary and secondary baits examined in this study. Dotted lines indicate interactions found in BIOGRID, MINT, and STRING protein interaction databases. f. IP-Western validation. Myc-tagged interactors indicated were transfected into 293T cells with stable expression of indicated Flag-HA-bait or Flag-HA-GFP. Lysates were immunoprecipitated with anti-myc resin and immunoblotted with either HA or anti-MYC antibodies. \mathbf{g} , α -LC3 blot of 293T cells in the absence and present of Torin1 (200 nM, 3h), Rapamycin (200nM, 3h) and Bafilomycin (100 nM, 3h).

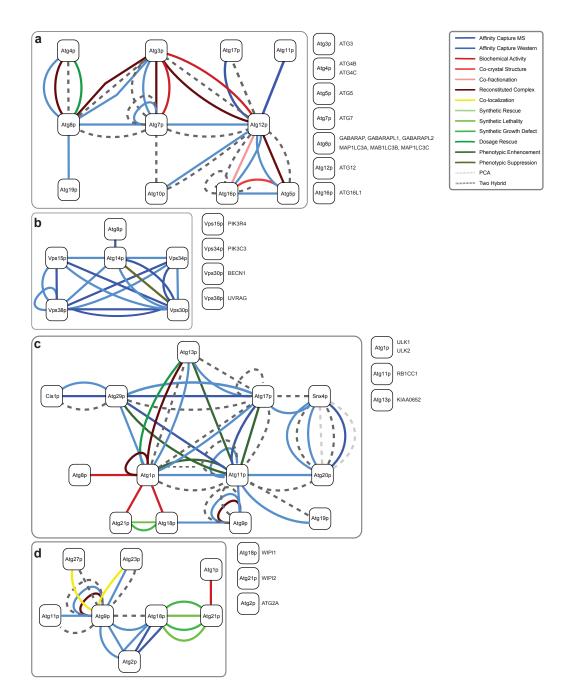
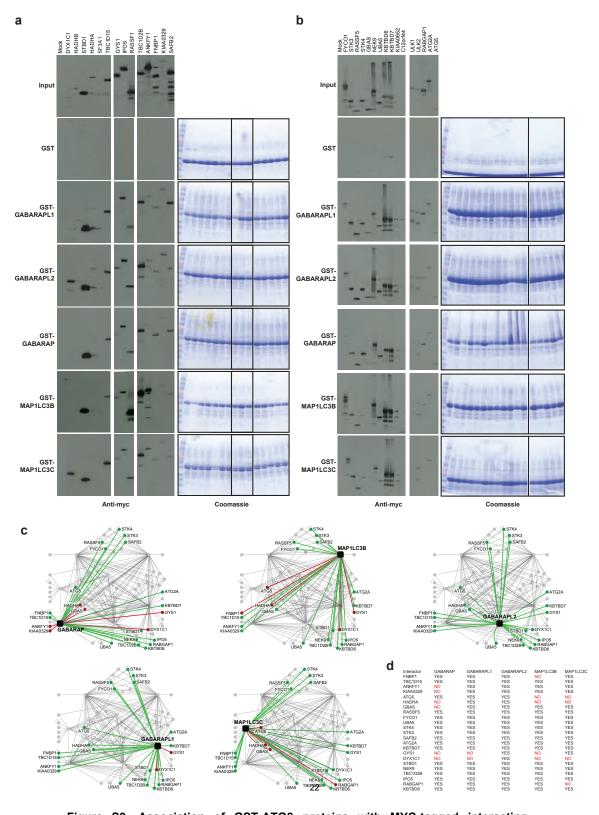



Figure S7. Summary of core interactions in the budding yeast autophagy system. All network data is based on BIOGRID and MINT databases. $\bf a$, UBL conjugation system. $\bf b$, Vps34p lipid kinase network. $\bf c$, Atg1p protein kinase network. $\bf d$, Atg2p membrane trafficking network. The corresponding human proteins are identified on the right of each panel. The color code indicates the type of interaction data.

3				Total known	# of known PPIs		Recipro	HCIPs found	
		Bait	HCIPs	PPIs for bait (MINT/BioGRID)	identified in this study by LC-MS/MS	Novel PPIs	Potential reciprocal PPIs	Observed	in biological replicate
		GABARAPL1	40	3	1	39	10	4	26
		GABARAPL2	31	22	5	26	10	7	26
		GABARAP	27	13	1	26	12	6	19
	Human ATG8's	MAP1LC3A	35	7	2	33	11	4	22
	A. 00 0	MAP1LC3B	34	3	1	33	13	4	29
		MAP1LC3C	15			15	9	1	13
		Total	182	48	10	172	65	26	135

Pfam d	lomain	Gene Symbol					
WE		BRWD2	NSMAF	WDR62	PIK3R4	LLGL1	ATG16L1
MAP1		GABARAP	GABARAPI1	GABARAPL2	MAB1LC3B	MAB1LC3C	MAP1LC3A
Pkin		NEK9	STK4	STK3	PRKCI	PIK3R4	WAPILGA
BI		ANKFY1	KBTBD6	KBTBD7	KEAP1	PINSPW	
			PIK3C3				
PI3_PI4_		PIK3CG		PIK3C2A	Pl4K2A		
BA		KBTBD6	KBTBD7	KEAP1			
Kelc		KBTBD6	KBTBD7	KEAP1			
PE		SQSTM1	NBR1	PRKCI			
PBK	_C2	PIK3CG	PIK3C3	PIK3C2A			
PI3	Ka	PIK3CG	PIK3C3	PIK3C2A			
TE	3C	TBC1D15	TBC1D2B	RABGAP1			
NIPS		NIPSNAP1	GBAS				
Z		SQSTM1	NBR1				
C1,		RASSF5	PRKCI				
EC		HADHA	114101				
FY		ANKFY1	FY001				
С		DYX1C1	PTPLAD1				
PBK.		PIK3CG	PIK3C2A				
SH:		DOCK1	FNBP1				
TPF	₹_1	DYX1C1	FKBP4				
Mst1_S	SARAH	STK4	STK3				
HE	AT	RANBP5	PIK3R4				
Peptida	se_C54	ATG4B					
3H0		HADHA					
3HCE		HADHA					
C		PIK3C2A					
Pkina		PRKCI				-	-
				-	—	-	-
Thiola		HADHB			—	-	
Thiola		HADHB					
EN		CLINT1					
GR		NSMAF					
HE		NEDD4					
W	W	NEDD4					
Bea	ach	NSMAF					
Cu	llin	CUL3					
MAP1B_i		MAP1B					
R		RASSF5					
RC		NEK9					
UE		SQSTM1					
Ar		ANKFY1					
BR		PDCD6IP					
Clat	hrin	CLTC					
Clathrin	_lg_ch	CLTA					
Clathrin	_propel	CLTC					
Clathr		CLTC					
cNMP_I		PRKAR1A					
CF		TFCP2					
FC		FNBP1					
FKB		FKBP4					
Glycog		GYS1					
Hyd_		KIAA0329					
LL		LLGL1					
Ly	sM	NCOA7					
P.		PIK3C2A					
RI		PRKAR1A					
RRI	W_1	SAFB2					
SA		SAFB2					
Su	ırp	SF3A1					
TL		NCOA7					
ubiq		SF3A1					
UC		USP11				 	
		DOCK1		-		-	-
Ded_	Cyto						
PTF		PTPLAD1			—	-	
CBN		STBD1					
RUN d		FYC01					
DUF		TBC1D15					
DU		USP11					
Th		UBE1DC1					
PRP21	_like_P	SF3A1					
ATO		ATG2A					
Autoph		ATG3					
Autophag		ATG3					
Autophag		ATG3					
ATO	311	RB1CC1					
DUF		RABGAP1		-		-	-
					_		—
PI	U	RABGAP1				-	-
	Nodd8	CUL3					
Cullin_	140000			1			
AP	G5	ATG5					
AP Th	G5 niF	ATG7					
AP	G5 niF	ATG7 ATG16L1					
AP Th	G5 niF G16	ATG7					
AP Th ATO	G5 niF 316 H	ATG7 ATG16L1	MAP1A	RCN2	RAB3GAP2	RAB3GAP1	

Figure S8. Summary of LC-MS/MS data and comparison to existing protein interaction data for the core autophagy signaling systems, as well as for the ATG8 sub-network. a, The bait, number of HCIPs, number of novel interactions found, ratio of known and total interactions found, and the results of reciprocal LC-MS/MS of selected interacting proteins is shown for the ATG8 network. b, PFAM analysis of the ATG8 sub-network. Proteins containing the indicated PFAM protein interaction domains are shown.

Figure S9. Association of GST-ATG8 proteins with MYC-tagged interacting proteins. a-b, Vectors expressing the indicated MYC-tagged HCIPs for the ATG8 network were transfected into 293T cells and subsequently tested for interaction with GST-ATG8 proteins. After extensive washing of GST-ATG8 resin, associated proteins were detected by immunoblotting with anti-MYC antibodies. **c**, *Ex vivo* validation. MYC-tagged proteins in extracts from 293T cells were tested for GST-ATG8 binding *in vitro* (Panel a). Green: binding. Red: no binding observed. Extracts from 293T cells transiently expressing the indicated Mys-tagged ATG8 interacting protein were lysed and extracts subjected to in vitro binding with the indicated GST-ATG8 isoform purified from bacteria. Washed complexes were subjected to SDS-PAGE, and immunoblotted using anti-MYC antibodies. **d**, Summary of binding data.

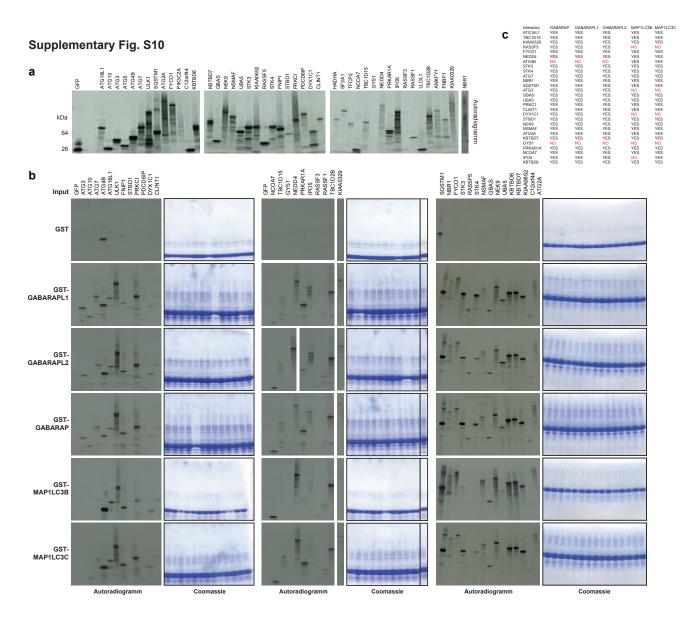
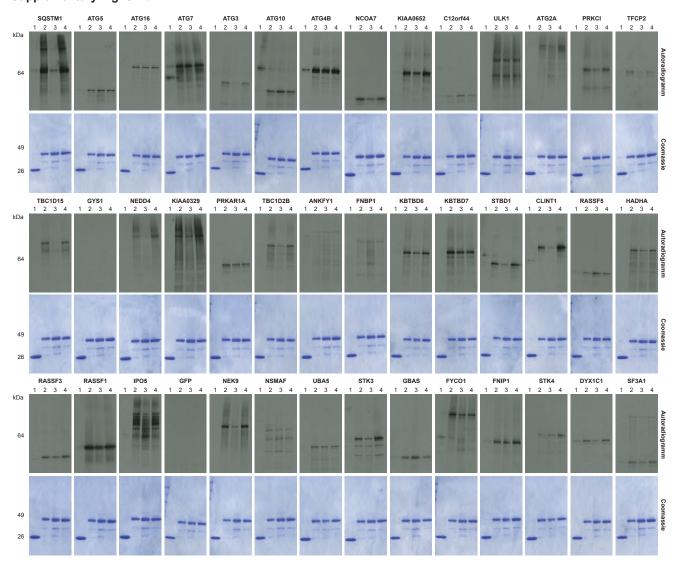
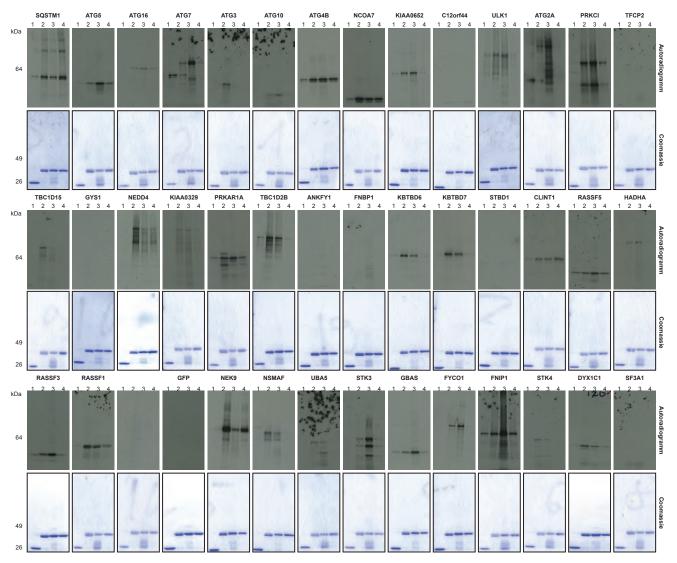
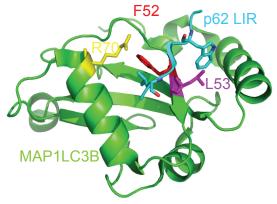
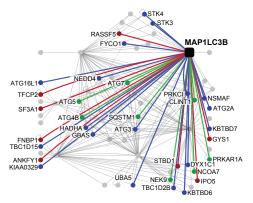




Figure S10. Association of GST-ATG8 proteins with *in vitro* translated interacting proteins. a, The indicated HCIPs for ATGs were translated and $^{35}\text{S-methionine-labelled}$ *in vitro* using reticulocyte extracts. b, Five μI of translation product was incubated in 150 μI of binding buffer containing 2 μg of the indicated GST-ATG8 protein bound to 10 μI of GSH-Sepharose beads. After incubation for 1 hour, beads were washed 5 times with 1 mI of binding buffer. Associated proteins were separated by SDS-PAGE, stained with Coomassie, and subjected to autoradiography. c, Summary table indicating the proteins that interact with each ATG8 ortholog *in vitro*.


Supplementary Fig. S11a


Supplementary Fig. S11b

Supplementary Fig. S11c

Supplementary Fig. S11d

	Bind depend	
	Y52A/L53A	R70A
	ATG3	ATG3
	DYX1C1	DYX1C1
	KBTBD6	KBTBD6
	KBTBD7	KBTBD7
	NEDD4	NEDD4
	NSMAF	NSMAF
	TBC1D15	TBC1D15
	NEK9	
MAP1LC3B	SQSTM1	
WAF ILCSB		ATG16L1
		ATG2A
		FYCO1
		GBAS
		HADHA
		KIAA0329
		PRKCI
		STK3
		STK4
		TBC1D2B
		UBA5

Supplementary Fig. S11e

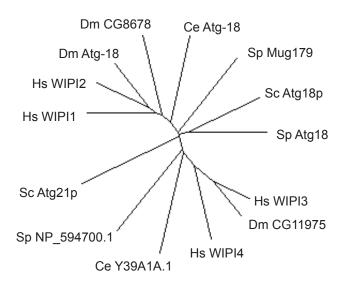
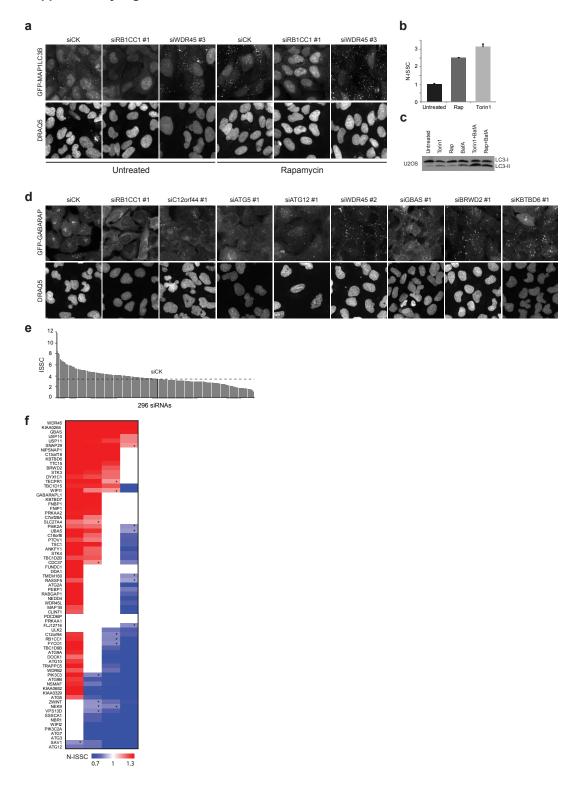



Figure S11. LIR-dependence of interactions between GST-ATG8 proteins and in vitro translated HCIPs. a, Immobilized GST (lane 1), GST-GABARAP (lane 2), GST-GABARAP Y49A/L50A (lane 3) or GST-GABARAP R70A (lane 4) were analyzed for binding with the indicated HCIPs as described in Figure S10. b, Immobilized GST (lane 1), GST-MAP1LC3B (lane 2), GST-MAP1LC3B F52A/L53A (lane 3) or GST-MAP1LC3B R70A (lane 4) were analyzed for binding with the indicated HCIPs as described in Figure S10. c, Structure of the SQSTM1 (p62) LIR-motif (cyan) bound to the LDS of MAP1LC3B (green) (pdb code: 2K6Q). Mutations employed in the experiments in panel b are shown: R70A (yellow), F52A (red), L53A (purple). d, Effect of the R70A mutation in MAP1LC3B on interaction with the ATG8 sub-network. Red edges, no interaction; green edges, interaction unaffected; blue edges, interaction reduced or eliminated. e, Phylogenetic tree for Atg18p and Atg21p related proteins from humans (Hs), S. pombe (Sp), C. elegans (Ce), Drosophila (Dm), and S. cerevisiae (Sc).

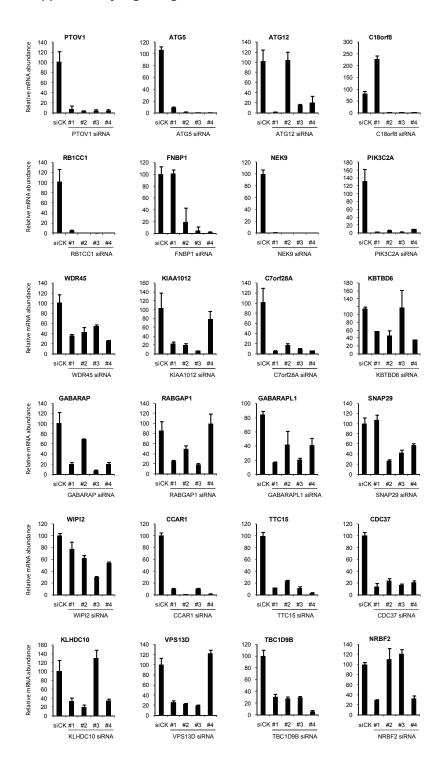
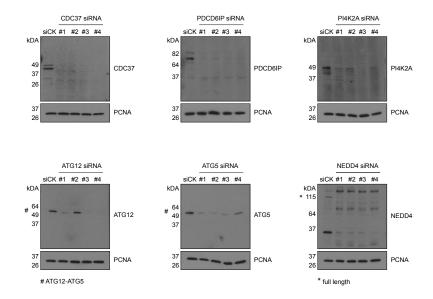

Delta Glycine								
HCIP/BAIT	GABARAP	GABARAPL1	GABARAPL2	MAP1LC3B	MAP1LC3A			
ANKFY1			-4.68					
ATG16L1			-5.68					
ATG3	-7.72	-7.89	-8.16	-10.09	-8.02			
ATG4B	11.60	12.95	-7.76	-6.45	9.64			
ATG5								
ATG7	-10.97	-10.74	-9.87	-9.94	-10.56			
BRWD2		-4.92			5.06			
CLINT1					8.03			
CLTA					7.54			
CLTC	6.26	-5.23	-5.75	-5.61	8.85			
CUL3	-6.01	-6.60	-3.51		5.73			
DYX1C1	-4.36							
FYCO1				10.32	10.37			
GABARAP		-8.16	6.50		-8.44			
GABARAPL2	5.82	9.51	5.70	0.40	-8.44			
GBAS	-9.70	7.87	-5.79	8.48	9.47			
GYS1	-8.11	-3.38	-7.71					
HADHA	0.70	-4.79	7	0.07	0.00			
HADHB	-9.70	-6.09	7.04	9.35	9.20			
KBTBD6	-9.85	-8.82	2.93	9.33	8.74			
KEAP1	2.29	-4.79	5.25	7.50	0.40			
LLGL1	-7.87	4.51	7.41	7.50	6.42			
MAP1A			. =0					
MAP1B	-4.95		4.59	0.00	5.26			
MAPILC3A			4.00	-6.28	-6.99			
MAP1LC3B			4.69	-8.18	8.57			
MAP1LC3C	7.05	2.24	7.68	8.67				
NBR1 NCOA7	7.95	8.24 -4.22	6.19					
NEDD4	-6.13	-4.22	0.19					
NEK9	-8.84	-8.12	-7.42		7.35			
NIPSNAP1	-7.21	-5.93	-6.56		6.38			
NSMAF	-6.54	7.52	6.22	8.49	7.16			
PDCD6IP	-5.75	1.02	0.22	0.40	7.06			
PIK3C3	-5.75				-5.54			
PIK3R4					-0.04			
PRKCI								
PTPLAD1	-5.64	4.64	5.74	8.20	7.09			
RAB3GAP1	-8.05	-7.96	6.83	7.10	9.09			
RAB3GAP2	0.00		0.00	7.10	5.36			
RANBP5	-5.57				9.63			
RASSF5	-8.31	-8.22	-7.19					
RB1CC1				-5.53				
RCN2								
SAFB2	-7.97	-7.80	-2.32					
SF3A1				-6.49	-7.74			
SQSTM1					-4.68			
STBD1	-10.72	-9.00	-8.00	9.89	8.60			
STK3				-5.22	-10.19			
STK4				-7.59	-7.39			
TBC1D15	-5.58							
TBC1D2B		-6.47	-5.16					
TFCP2								
TMEM160	-10.63	-8.83	8.89	6.90	10.57			
UBA5			6.94					
WDR62			8.52					

Figure S12. Proteomic analysis of the ATG8 sub-network: Effect of C-terminal glycine on protein interactions in vivo. Effect of deletion of the C-terminal glycine residue from ATG8 proteins. The primary data is provided in Supplemental Table S3a and S3b. The indicated ATG8 proteins or their C-terminal Δ Gly counterparts, were purified from 293T cells and subjected to LC-MS/MS. TSCs were used to calculate differential interaction scores using a modified version of the NSAF method (see Detailed Methods for method of the scoring). Only scores for proteins that passed the stringent threshold for statistical significance are highlighted (red, increased abundance; blue, decreased abundance).


Supplementary Fig. S13

Supplementary Fig. S13g

Supplementary Fig. S13h

Supplementary Fig. S13i

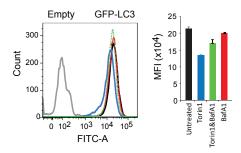


Figure S13. RNAi analysis of genes in the autophagy interaction network. a, Representative images of GFP-MAPLC3B expressing U2OS cells after transfection with the indicated siRNAs in the presence and absence of Rapamycin (200 nM, 6h). DRAQ5 is used to mark nuclei. The GFP images are the same as those used in Fig. 5a in the main paper. b, Normalized integrated spot signal per cell (N-ISSC) for U2OS cells expressing GFP-MAP1LC3B either alone or 6 h after treatment with rapamycin or Torin1 (200 nM). c, α-LC3 blot of U2OS cells with the indicated treatments. d, Representative images of GFP-GABARAP expressing U2OS cells after transfection with the indicated siRNAs in the presence. DRAQ5 is used to mark nuclei. e, ISSC values for cells transfected with 296 siRNAs targeting 74 genes. f, Normalized ISSC (N-ISSC) for GFP-GABARAP with or without Rapamycin (6 h) (4 siRNAs/gene). Unless noted otherwise, p < 0.01 using Students T-test; *, p<0.05; white rectangles, p>0.05. g, Quantitative RT-PCR results for depletion of the indicated genes in U2OS cells. Error bars, Standard Deviation, n = 3. h, Validation of siRNA mediated depletion of CDC37, PDCD6IP, PI4K2A, ATG12, ATG5, and NEDD4. Four siRNAs targeting the indicated genes were transfected into U2OS cells and after 72 h, cells were lysed and probed with antibodies against the indicated proteins. Blots were re-probed with PCNA as a loading control. All antibodies were from Cell Signaling Technologies, with the exception of anti-PI4K2A, which was from Novus. i, Validation of flow cytometry flux assay. Color-coding for histogram and bar-graph correspond. GFP-MAP1LC3B U2OS cells or empty U2OS cells were subjected to flow cytomety. The mean fluorescence intensity (MFI) was determined using FLOWJO. Torin1 activated flux through the autophagy pathway and this was reversed by BafA1 treatment. Error bars, Standard Deviation, n = 2.