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1 Characteristics of the Minimum of Solar Cycle 23
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Figure 1: Sunspot cycles over the last century. The blue curve shows the cyclic variation in
the number of sunspots (left-hand y-axis) with time (x-axis). The red bars shows the cumula-
tive number of sunspot-less days (right-hand y-axis) between successive maximum; the minimum
of sunspot cycle 23 was the longest in the space age with the largest number of spotless days.
Nonetheless, the recorded sunspot history shows solar cycles 13 and 14 had even larger number of

spotless days; hence, although the recently concluded minimum was unusual, it is not unique..

The solar magnetic cycle goes through periods of successive maxima and minima in activity
which is manifested in a variation in the number of sunspots observed on the solar surface. The
minimum of solar activity is often parameterized by the number of days without sunspots (i.e.
spotless days). The recently concluded solar minimum following sunspot cycle 23 was unusually
long, with the largest number of spotless days recorded in the space age (see Figure 1). Moreover,

this minimum was also characterized by a relatively weak solar polar field strength as compared to
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the previous three cycles, for which direct polar field observations exists.

2 The Dynamo Model

In our simulation we solve the kinematic, axisymmetric dynamo equations:
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where A is the ¢-component of the potential vector (from which B, and By can be obtained),
B is the toroidal field (B,), v, is the meridional flow, €} the differential rotation, 7 the turbulent
magnetic diffusivity and s = rsin(#). Conspicuous by its absence is the so-called poloidal source
(traditionally known as the dynamo a-effect); in this work we introduce a more accurate treatment
of the Babcock-Leighton'?!? poloidal field regeneration algorithm as a discreet process composed
of individual bipolar sunspot pairs (also known as Active Regions, ARs; more below). Kinematic
dynamo models based on this Babcock-Leighton poloidal field regeneration mechanism have been
successful in reproducing the large-scale properties of the solar cycle® and is strongly supported by
recent observations?®. We also need to define three more ingredients: meridional flow, differential
rotation and turbulent magnetic diffusivity. We use appropriate choices for these physical ingredi-
ents which make our simulations relevant for the Sun; these are discussed in the ensuing sections.

More details regarding kinematic dynamo models can be found in a review by Charbonneau® and
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references therein.

3 Modeling Individual Active Regions

It is currently believed that the recreation of poloidal field is caused primarily by the emergence
of ARs, and their subsequent diffusion and transport towards the poles; an idea first introduced by
Babcock!? and further elaborated by Leighton'®. Due to the crucial role of ARs, modeling their
emergence accurately within the dynamo process is important. In order to do this, we follow an
idea proposed by Durney® (and further elucidated by Nandy & Choudhuri®®) of using ring duplets,
although with an improved version which addresses the two main deficiencies of the earlier algo-
rithms: strong sensitivity to changes in grid resolution and the introduction of sharp discontinuities

on the ¢ component of the potential vector A.

We define the ¢ component of the potential vector A corresponding to an AR as:
Aar(r,0) = Ko A(®)F(r)G(0), 3)

where K = 400 is a constant we introduce to insure super-critical solutions and A(®) defines the

strength of the ring-duplet and is determined by flux conservation. F'(r) is defined as

0 r < R@ — Rar
F(r) = , )

%sin2 T (r—(Re — Rar))| 7> Ro — Rar

where R, = 6.96 x 10® m corresponds to the radius of the Sun and R,, = 0.15R,, represents the
penetration depth of the AR. Finally, G(0) is easier to define in integral form and in the context

of the geometry of the radial component of the magnetic field on the surface. In Figure 2-a we
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present a plot of the two super-imposed polarities of an AR after being projected on the r-6 plane.

In order to properly describe such an AR we need to define the following quantities: the co-latitude

of emergence 6,,., the diameter of each polarity of the duplet A, for which we use a fixed value of 6°

(heliocentric degrees) and the latitudinal distance between the centers x = arcsin[sin(y) sin(Ag,.)],

which in turn depends on the angular distance between polarity centers A, = 6° and the AR tilt

angle y; x 1is calculated using the spherical law of sines. In terms of these quantities, the latitudinal

dependence for each polarity is determined by the following piecewise function (use the top signs

for the positive polarity and the lower for negative):

;

A
0 0<6m«:|:§—5
Be0) = +km [1+cos (3O =0 +%)] 0 Fi-5<0<0,T3+5
A
\ 0 629ar$§+5

In terms of these piecewise functions G(#) becomes:

Gl = - /0 B_(0) + B,(0)] sin(0')d0.

sin 6

A model AR is shown in Figure 2-b. This AR is located at a latitude of 40° and has a penetration

depth of 0.85R. The depth of penetration of the AR is motivated from results indicating that the

disconnection of an AR flux-tube happens deep down in the CZ*.

4 Recreating the Poloidal Field

Given that the accumulated effect of all ARs is what regenerates the poloidal field, we need to spec-

ify an algorithm for AR eruption and decay in the context of the solar cycle. For each hemisphere

independently and on each solar day of our simulation we perform the following procedure:
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Radial Component of the Ring Duplets at the Surface 2.5D Representation of One of Our Active Regions

Field Strength

Colatitude

(a) (b)

Figure 2: (a) Superimposed magnetic field of the two polarities of a modeled active region (tilted
bipolar sunspot pair). The different quantities involved are: the co-latitude of emergence 6,,., the
diameter of each polarity of the duplet A and the latitudinal distance between the centers y. (b)
Field lines of one of our model active regions including a potential field extrapolation for the
region outside of the Sun. Contours correspond to field lines that trace the poloidal components
and in this example their sense is counter-clockwise. The dashed line is included for reference and

corresponds to a depth of 0.85R.

1. Search for magnetic fields exceeding a critical buoyancy threshold B, = 5 x 10* Gauss on a

specified layer at the bottom of the CZ (r = 0.71R), and record their latitudes.

2. Choose randomly one of the latitudes found on Step 1 and calculate the amount of magnetic
flux present within it’s associated toroidal ring. The probability distribution we use is not
uniform, but is restricted to observed active latitudes. We do this by making the probability

function drop steadily to zero between 30° (-30°) and 40° (-40°) in the northern (southern)
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hemisphere:

0 — 0.3057 0 — 0.6941

3. Calculate the corresponding AR'’s tilt, using the local field strength By, the calculated flux
®( and the latitude of emergence \. For this we use the expression found by Fan, Fisher &

McClymont®! (y o ®¢/* By */*sin(\)).

4. Reduce the magnetic field of the toroidal ring from which the AR originates. In order to do
this, we first estimate how much magnetic energy is present on a partial toroidal ring (after
removing a chunk with the same angular size as the emerging AR). Given that this energy
is smaller than the one calculated with a full ring, we set the value of the toroidal field such
that the energy of a full toroidal ring filled with the new magnetic field strength is the same

as the one calculated with the old magnitude for a partial ring.

5. Deposit an AR (as defined in Section 3), at the same latitude chosen on Step 2, whose

strength is determined by the flux calculated in Step 2 and whose tilt was calculated on Step

3.

5 Meridional Flow

We use the meridional profile of Mufioz-Jaramillo, Nandy and Martens?* (MNMO09), which closely
represents the observed features present in helioseismic meridional flow data and is defined by the

following stream funcion:

_ Uo(t)

r—R,

|\ [
(/r7 9) Rl _ Rp

(r — R,)(r — Ry)sin (7r ) sint@)(9) cos(h), (8)
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where ¢ = 1 governs the latitudinal dependence, 12, = 0.675 R, the penetration depth, a = 1.92
and R; = 1.029R, govern the location of the peak of the poleward flow and the amplitude and
location of the equatorward return flow. For more details please refer to MNMO09%4, In order to
test the impact of a changing meridional flow on the solar cycle, vy(t) is set such that the peak
amplitude of the meridional flow at the surface varies between 15 — 30m/s. We track the polar field

amplitude and produce random changes in vy(t) at sunspot maximum.

6 Differential Rotation

We use the analytical form of Charbonneau et al.*. It is defined as:

Wec

Qu(r,0) = 27 [Q +1 (1 terf (-—)) (Q — Qo + (- Qe)QS(e))]
9)
Qs(0) = acos*(0) + (1 — a) cos*(0),
where (). = 432 nHz is the rotation frequency of the core, {2, = 470 nHz is the rotation frequency
of the equator, €2, = 330 nHz is the rotation frequency of the pole, a = 0.483 is the strength
of the cos?(f) term relative to the cos*(6) term, r,. = 0.7R;, the location of the tachocline and

wye = 0.025 R, half of its thickness.
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7 Turbulent Magnetic Diffusivity

The final ingredient of this model is a radially dependent magnetic diffusivity; in this work we use

a double-step profile given by

77(/’") — and + nCZ - and (1 + erf <71 ; 7/.CZ>) _I_ 7759 - nCZ - and (1 + erf (T ; rSg))) (10)

2 cz 2 s9

where my,g = 10% cm?/s corresponds to the diffusivity at the bottom of the computational do-
main, 7., = 10" cm?/s corresponds to the diffusivity in the convection zone, 15, = 10'? cm?/s
corresponds to the near-surface supergranular diffusivity and r., = 0.71Rq, d.. = 0.015R,
rsg = 0.95Rs and dy, = 0.025 R, characterize the transitions from one value of diffusivity to the

other.

8 Numerical Methods

In order to solve the 2.5 dynamo equations (Eq. 1 & 2) we transform our system of Partial Dif-
ferential Equations(PDESs) to a system of coupled Ordinary Differential Equations(ODEs) by dis-
cretizing the spatial operators using finite differences. For advective terms we use a third order
upwind scheme, for diffusive terms we use a second order space centered scheme and for other
first derivative terms we use a second order space centered scheme. We then use an exponential

propagation method to integrate the equations in time?*3%34,

Our computational domain comprises the entire solar convection zone and a small section of

the upper radiative region (0.55R, < r < Ry and 0 < 6 < 7). We use a 300 x 500 uniformly
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spaced grid in radius (300 points) and colatitude (500 points). Our boundary conditions are:

A(r,0=0)=0, QA _, =0, A@r0=m)=0, A@r=055R,0)=0

(11)

B(r,§=0)=0, B(r=R.,0)=0, Brd=m)=0, 28 _5r =0,

which correspond to a conductive core at r = 0.55 R, a perfect vacuum at 7 = R and the rotation

axis in an axisymmetric formulation at § = 0, 7.

9 Sensitivity to Changes in the Simulation Setup

The representative simulation results presented earlier (which we term as the reference solution)
were performed with the parameters and model setup as described in previous sections. Our realis-
tic method of handling solar active regions is a major improvement within the framework of solar
dynamo models and has been demonstrated to capture accurately the observed surface flux trans-
port dynamics leading to polar field reversal”. The internal meridional flow profile that we have

2024 and the standard model

used is based on the best available constraints from helioseismic data
of the solar interior®. In our simulations we have used a peak speed randomly varying between
a reasonable range while keeping the internal profile unchanged and as constrained in MNMO0924.
This variation is assumed to be instantaneous in our reference simulations. The internal diffusivity
profile in our simulations is widely used in the community (see the dynamo benchmark study by
Jouve et al.*® and the review by Charbonneau®); however, the assumed value of the turbulent dif-
fusivity coefficient can be different in various simulations. This value sets the diffusive timescale

and determines whether flux transport dynamics is dominated by diffusion or advection by merid-

ional flow!7. In this section, we test the robustness of our results to changes in those aspects of our
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model setup which are not well constrained.
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Figure 3: Simulated normalized polar field strength versus cycle overlap at sunspot cycle minimum
in units of days for a run with supergranular diffusivity of 5 x 10'? cm?/s. Here, B4, = 9.62 x 103
Gauss.The results show that even in a high-diffusivity solution, a deep solar minimum with a large
number of spotless days is typically associated with relatively weak polar field strength as indicated
by the reference simulation. Crosses (circles) correspond to data from the Northern (Southern)

solar hemisphere

We first study the impact of varying the meridional flow continuously between the old and
the new random value (as opposed to the instantaneous change in our reference solutions). As
outlined in Tables 1-2, the correlations between cycle overlap, polar field strength and meridional
flow variations remain very similar (both qualitatively and quantitatively) to that obtained earlier in

our reference solution. In fact, in certain cases the correlations become stronger on incorporating
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smoothly varying meridional flows.

Furthermore, we explore the influence of a higher turbulent diffusion coefficient with a new
model run, keeping other ingredients the same as in the reference solution. With a diffusivity co-
efficient five times that of the reference solution in the upper part of the convection zone (which
increases the role of diffusive flux transport in this region) we find that the results remain qualita-
tively similar, although quantitatively somewhat different. The flow speed in the early half of the
cycle (v,_1) still has the maximum impact on the number of spotless days (conversely, cycle over-
lap), although the strength of the correlation is weaker relative to the reference solution. This is
expected as in these model runs, diffusive flux dispersal shares the responsibility of magnetic flux
transport along with meridional circulation thereby somewhat reducing the correlation between
flow speed and cycle overlap. Additionally, we find that the correlation between the polar field
strength and meridional flow speed in these high diffusivity solutions is essentially similar to that

of the reference solution.

Note that the toroidal and poloidal field strength are determined by the threshold for magnetic
buoyancy in these kinematic simulations. In the reference solution we have set B, = 5 x 10* Gauss
based on results of thin-flux-tube-simulations. The peak polar (radial) field strength generated in
this simulation is 16.66 x 10® Gauss (9.62 x 10? Gauss for the high-diffusivity solution with the
same B.). However, full-MHD simulations can self-consistently generate toroidal field strength

37

only on the order of 1000 Gauss’’. We have performed additional runs with a new buoyancy
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kinematically simulated toroidal field amplitude on the same order as that in full-MHD simulations.
As indicated in the accompanying tables, the relationship between the nature of solar minima and
flow speed variations remain the same qualitatively as in the reference solution. We also find
that in this case, the peak polar field strength reduces to 147 Gauss. Although low-resolution
magnetograms which measure the (plausibly unresolved) diffuse component of the magnetic field
indicate that the average field strength is on the order of tens of Gauss, recent high resolution
observations from the Hinode space mission shows the existence of strong kilo-Gauss unipolar
(radial) flux tubes in the polar region®®3°. Although, it is not clear whether in reality the strong
kilo-Gauss flux tubes or the much weaker (diffuse) polar field is involved in the regeneration of
the toroidal field, our numerous model runs show that this is a matter of scaling; the underlying
qualitative relationship between the characteristics of solar minima and flow variations remain

similar.

Finally, we explore the correlation between cycle overlap and polar field strength (Table 3).
We find that in the simulation using continuously varying meridional flows, the correlation is ac-
tually stronger in comparison to the reference solution. In the high diffusion case the correlation
between cycle overlap and polar field strength is almost negligible; interestingly, however, a simi-
lar trend to the reference solution is still apparent (Figure 3); cycles with a large number of spotless

days (high negative overlap) have consistently weaker polar field strength.

In summary therefore, we find that the main model results related to the origin of very deep

solar minima is robust with respect to reasonable changes in the simulation setup and assumptions.
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10 A Note on Flow Observations

How do our simulations compare to flow observations related to the minimum of solar cycle 23?
Helioseismic measurements of the equatorward migration of the solar internal torsional oscillation
show that the torsional oscillation pattern of the upcoming cycle 24 (which originated near the
maximum of the preceding cycle) is migrating relatively slowly compared to that of cycle 23%°.
Since the torsional oscillation pattern is believed to be associated with the migration of the mag-
netic cycle?’, this could be indirect evidence that the meridional flow driving (the toroidal field belt
of) cycle 24 in the solar interior is relatively slow compared to that of the previous cycle; this is in

agreement with our theoretical simulations.

On the other hand, direct surface observations*' indicate that the flow near the surface may
have increased (roughly in a sinusoidal fashion) from the maximum of cycle 23 to its minimum — in
apparent conflict with the earlier, indirect evidence of a slower flow and our simulations. However,
helioseismic measurements indicate that these near-surface flow variations reduce with depth and is
almost non-existent at depths of 0.979 R *. Therefore we argue that these surface variations may
have no significant impact on the magnetic field dynamics in the solar interior, which is reflected
in their inadequacy in reproducing the very low polar field strength at the minimum of cycle 2325,
In support of our argument, we plot in Figure 4 the depth-dependence of the cumulative poleward
mass flux amplitude in the meridional flow (based on a standard meridional flow profile) and find
that only about 2% of the poleward mass-flux is contained within the surface and a depth of 0.975

R . Evidently, much of the flux transport dynamics associated with meridional flow occur deeper
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Figure 4: A plot of the cumulative meridional flow mass flux amplitude (between the radius in
question and the surface; y-axis) versus depth (measured in terms of fractional solar radius r/R;
x-axis). The mass flux is determined from the typical theoretical profile of meridional circulation
used in solar dynamo simulations including the one described here. This estimate indicates that
only about 2% of the poleward mass-flux is contained between the solar surface and a radius of
0.975 R., a region in which current (well-constrained) observations of the meridional flow is

limited to.

down in the solar interior — as yet inaccessible to observations — probing which is possible using

dynamo simulations such as that outlined here.
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Ovrlp. vs. V,,  Ovrlp. vs. V,,_;  Ovrlp. vs. AV,
Simulation
r p r p r Y
Northern Hemisphere
1. Reference Solution -0.13 93.42% -0.81 99.99% 0.45 99.99%
2. Continuous Flow Variations -0.13 94.28% -0.80 99.99% 0.47 99.99%
3. High Diffusivity -0.17 97.00% -0.38 99.99% 0.15 93.46%
4. Low Buoyant Threshold (1KG) -0.20 99.75% -0.63 99.99% 0.30 99.99%
Southern Hemisphere
1. Reference Solution -0.13 94.53% -0.80 99.99% 0.45 99.99%
2. Continuous Flow Variations -0.13 94.32% -0.79 99.99% 0.46 99.99%
3. High Diffusivity -0.17 96.61% -0.38 99.99% 0.15 93.66%
4. Low Buoyant Threshold (1KG) -0.19 99.65% -0.64 99.99% 0.31 99.99%

Table 1: Correlations for overlap versus meridional flow. (1) The reference solution uses

all the parameters mentioned above and is the one reported in the main manuscript. (2)

In this simulation the flow no longer changes abruptly but undergoes a continuous change

from one value to the other through a ramp function. The slope is set such that the largest

change (15 m/s) takes three years. (3) Solution in which the supergranular diffusivity is

changed from 7,, = 10" cm?/s to n,, = 5 x 10'* cm?/s. (4) Simulation in which the buoyant

threshold is 1 kilo-Gauss (KG).
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Brvs. V, Brvs. V,_4 Brvs. AV,
Simulation
r Y r Y r p
Northern Hemisphere
1. Reference Solution 0.45 99.99% -0.83 99.99% 0.87 99.99%
2. Continuous Flow Variations 0.40 99.99% -0.82 99.99% 0.91 99.99%
3. High Diffusivity Solution 0.39 99.99% -0.68 99.99% 0.76 99.99%
4. Low Buoyant Threshold (1KG) 0.43 99.99% -0.74 99.99% 0.78 99.99%
Southern Hemisphere
1. Reference Solution 0.45 99.99% -0.83 99.99% 0.87 99.99%
2. Continuous Flow Variations 0.40 99.99% -0.81 99.99% 0.91 99.99%
3. High Diffusivity Solution 0.38 99.99% -0.68 99.99% 0.75 99.99%
4. Low Buoyant Threshold (1KG) 0.43 99.99% -0.74 99.99% 0.78 99.99%

Table 2: Correlations for polar field strength versus meridional flow. (1) The reference

solution uses all the parameters mentioned above and is the one reported in the main

manuscript. (2) In this simulation the flow no longer changes abruptly but undergoes a

continuous change from one value to the other through a ramp function. The slope is

set such that the largest change (15 m/s) takes three years. (3) Solution in which the

supergranular diffusivity is changed from 7, = 10'? cm?/s to n,, = 5 x 10'* cm?/s. (4)

Simulation in which the buoyant threshold is 1 kilo-Gauss (KG).
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Simulation

Northern Hemisphere
1. Reference Solution
2. Continuous Flow Variations
3. High Diffusivity

4. Low Buoyant Threshold (1KG)

Southern Hemisphere

1. Reference Solution
2. Continuous Flow Variations
3. High Diffusivity

4. Low Buoyant Threshold (1KG)

Br vs. Ovrlp.

r Y
0.46 99.99%
0.54 99.99%
0.10 80.02%
0.32  99.99%
0.47  99.99%
0.52 99.99%
0.12 85.44%
0.33  99.99%

the buoyant threshold is 1 kilo-Gauss (KG).

Table 3: Correlations for polar field strength versus overlap. (1) The reference solution
uses all the parameters mentioned above and is the one reported in the main manuscript.
(2) In this simulation the flow no longer changes abruptly but undergoes a continuous
change from one value to the other through a ramp function. The slope is set such that
the largest change (15 m/s) takes three years. (3) Solution in which the supergranular

diffusivity is changed from 7., = 102 cm?/s to 7, = 5 x 10'* cm?/s. (4) Simulation in which
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