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1 Characteristics of the Minimum of Solar Cycle 23
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Figure 1: Sunspot cycles over the last century. The blue curve shows the cyclic variation in

the number of sunspots (left-hand y-axis) with time (x-axis). The red bars shows the cumula-

tive number of sunspot-less days (right-hand y-axis) between successive maximum; the minimum

of sunspot cycle 23 was the longest in the space age with the largest number of spotless days.

Nonetheless, the recorded sunspot history shows solar cycles 13 and 14 had even larger number of

spotless days; hence, although the recently concluded minimum was unusual, it is not unique..

The solar magnetic cycle goes through periods of successive maxima and minima in activity

which is manifested in a variation in the number of sunspots observed on the solar surface. The

minimum of solar activity is often parameterized by the number of days without sunspots (i.e.

spotless days). The recently concluded solar minimum following sunspot cycle 23 was unusually

long, with the largest number of spotless days recorded in the space age (see Figure 1). Moreover,

this minimum was also characterized by a relatively weak solar polar field strength as compared to
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the previous three cycles, for which direct polar field observations exists.

2 The Dynamo Model

In our simulation we solve the kinematic, axisymmetric dynamo equations:
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where A is the φ-component of the potential vector (from which Br and Bθ can be obtained),

B is the toroidal field (Bφ), vp is the meridional flow, Ω the differential rotation, η the turbulent

magnetic diffusivity and s = r sin(θ). Conspicuous by its absence is the so-called poloidal source

(traditionally known as the dynamo α-effect); in this work we introduce a more accurate treatment

of the Babcock-Leighton12,13 poloidal field regeneration algorithm as a discreet process composed

of individual bipolar sunspot pairs (also known as Active Regions, ARs; more below). Kinematic

dynamo models based on this Babcock-Leighton poloidal field regeneration mechanism have been

successful in reproducing the large-scale properties of the solar cycle6 and is strongly supported by

recent observations29. We also need to define three more ingredients: meridional flow, differential

rotation and turbulent magnetic diffusivity. We use appropriate choices for these physical ingredi-

ents which make our simulations relevant for the Sun; these are discussed in the ensuing sections.

More details regarding kinematic dynamo models can be found in a review by Charbonneau6 and
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references therein.

3 Modeling Individual Active Regions

It is currently believed that the recreation of poloidal field is caused primarily by the emergence

of ARs, and their subsequent diffusion and transport towards the poles; an idea first introduced by

Babcock12 and further elaborated by Leighton13. Due to the crucial role of ARs, modeling their

emergence accurately within the dynamo process is important. In order to do this, we follow an

idea proposed by Durney25 (and further elucidated by Nandy & Choudhuri26) of using ring duplets,

although with an improved version which addresses the two main deficiencies of the earlier algo-

rithms: strong sensitivity to changes in grid resolution and the introduction of sharp discontinuities

on the φ component of the potential vector A.

We define the φ component of the potential vector A corresponding to an AR as:

Aar(r, θ) = K0A(Φ)F (r)G(θ), (3)

where K0 = 400 is a constant we introduce to insure super-critical solutions and A(Φ) defines the

strength of the ring-duplet and is determined by flux conservation. F (r) is defined as

F (r) =





0 r < R� − Rar

1
r
sin2

[
π

2Rar
(r − (R� − Rar))

]
r ≥ R� − Rar

, (4)

where R� = 6.96 × 108 m corresponds to the radius of the Sun and Rar = 0.15R� represents the

penetration depth of the AR. Finally, G(θ) is easier to define in integral form and in the context

of the geometry of the radial component of the magnetic field on the surface. In Figure 2-a we
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present a plot of the two super-imposed polarities of an AR after being projected on the r-θ plane.

In order to properly describe such an AR we need to define the following quantities: the co-latitude

of emergence θar, the diameter of each polarity of the duplet Λ, for which we use a fixed value of 6o

(heliocentric degrees) and the latitudinal distance between the centers χ = arcsin[sin(γ) sin(∆ar)],

which in turn depends on the angular distance between polarity centers ∆ar = 6o and the AR tilt

angle γ; χ is calculated using the spherical law of sines. In terms of these quantities, the latitudinal

dependence for each polarity is determined by the following piecewise function (use the top signs

for the positive polarity and the lower for negative):

B±(θ) =





0 θ < θar ∓ χ
2
− Λ

2

± 1
sin(θ)

[
1 + cos

(
2π
Λ

(θ − θar ± χ
2
)
)]

θar ∓ χ
2
− Λ

2
≤ θ < θar ∓ χ

2
+ Λ

2

0 θ ≥ θar ∓ χ
2

+ Λ
2

(5)

In terms of these piecewise functions G(θ) becomes:

G(θ) =
1

sin θ

∫ θ

0

[B−(θ′) + B+(θ′)] sin(θ′)dθ′. (6)

A model AR is shown in Figure 2-b. This AR is located at a latitude of 40o and has a penetration

depth of 0.85R�. The depth of penetration of the AR is motivated from results indicating that the

disconnection of an AR flux-tube happens deep down in the CZ30.

4 Recreating the Poloidal Field

Given that the accumulated effect of all ARs is what regenerates the poloidal field, we need to spec-

ify an algorithm for AR eruption and decay in the context of the solar cycle. For each hemisphere

independently and on each solar day of our simulation we perform the following procedure:
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Figure 2: (a) Superimposed magnetic field of the two polarities of a modeled active region (tilted

bipolar sunspot pair). The different quantities involved are: the co-latitude of emergence θar, the

diameter of each polarity of the duplet Λ and the latitudinal distance between the centers χ. (b)

Field lines of one of our model active regions including a potential field extrapolation for the

region outside of the Sun. Contours correspond to field lines that trace the poloidal components

and in this example their sense is counter-clockwise. The dashed line is included for reference and

corresponds to a depth of 0.85R�.

1. Search for magnetic fields exceeding a critical buoyancy threshold Bc = 5× 104 Gauss on a

specified layer at the bottom of the CZ (r = 0.71R�), and record their latitudes.

2. Choose randomly one of the latitudes found on Step 1 and calculate the amount of magnetic

flux present within it’s associated toroidal ring. The probability distribution we use is not

uniform, but is restricted to observed active latitudes. We do this by making the probability

function drop steadily to zero between 30o (-30o) and 40o (-40o) in the northern (southern)
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hemisphere:

P (θ) ∝
(

1 + erf

[
θ − 0.305π

0.055π

])(
1 − erf

[
θ − 0.694π

0.055π

])
. (7)

3. Calculate the corresponding AR’s tilt, using the local field strength B0, the calculated flux

Φ0 and the latitude of emergence λ. For this we use the expression found by Fan, Fisher &

McClymont31 (γ ∝ Φ
1/4
0 B

−5/4
0 sin(λ)).

4. Reduce the magnetic field of the toroidal ring from which the AR originates. In order to do

this, we first estimate how much magnetic energy is present on a partial toroidal ring (after

removing a chunk with the same angular size as the emerging AR). Given that this energy

is smaller than the one calculated with a full ring, we set the value of the toroidal field such

that the energy of a full toroidal ring filled with the new magnetic field strength is the same

as the one calculated with the old magnitude for a partial ring.

5. Deposit an AR (as defined in Section 3), at the same latitude chosen on Step 2, whose

strength is determined by the flux calculated in Step 2 and whose tilt was calculated on Step

3.

5 Meridional Flow

We use the meridional profile of Muñoz-Jaramillo, Nandy and Martens24 (MNM09), which closely

represents the observed features present in helioseismic meridional flow data and is defined by the

following stream funcion:

Ψ(r, θ) =
v0(t)

r
(r − Rp)(r − R�) sin

(
π

r − Rp

R1 − Rp

)a

sin(q+1)(θ) cos(θ), (8)
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where q = 1 governs the latitudinal dependence, Rp = 0.675R� the penetration depth, a = 1.92

and R1 = 1.029R� govern the location of the peak of the poleward flow and the amplitude and

location of the equatorward return flow. For more details please refer to MNM0924. In order to

test the impact of a changing meridional flow on the solar cycle, v0(t) is set such that the peak

amplitude of the meridional flow at the surface varies between 15−30m/s. We track the polar field

amplitude and produce random changes in v0(t) at sunspot maximum.

6 Differential Rotation

We use the analytical form of Charbonneau et al.32. It is defined as:

ΩA(r, θ) = 2π
[
Ωc + 1

2

(
1 + erf

(
r−rtc

wtc

))
(Ωe − Ωc + (Ωp − Ωe)ΩS(θ))

]

ΩS(θ) = a cos2(θ) + (1 − a) cos4(θ),

(9)

where Ωc = 432 nHz is the rotation frequency of the core, Ωe = 470 nHz is the rotation frequency

of the equator, Ωp = 330 nHz is the rotation frequency of the pole, a = 0.483 is the strength

of the cos2(θ) term relative to the cos4(θ) term, rtc = 0.7R� the location of the tachocline and

wtc = 0.025R� half of its thickness.
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7 Turbulent Magnetic Diffusivity

The final ingredient of this model is a radially dependent magnetic diffusivity; in this work we use

a double-step profile given by

η(r) = ηbcd +
ηcz − ηbcd

2

(
1 + erf

(
r − rcz

dcz

))
+

ηsg − ηcz − ηbcd

2

(
1 + erf

(
r − rsg

dsg

,

))
(10)

where ηbcd = 108 cm2/s corresponds to the diffusivity at the bottom of the computational do-

main, ηcz = 1011 cm2/s corresponds to the diffusivity in the convection zone, ηsg = 1012 cm2/s

corresponds to the near-surface supergranular diffusivity and rcz = 0.71R�, dcz = 0.015R�,

rsg = 0.95R� and dsg = 0.025R� characterize the transitions from one value of diffusivity to the

other.

8 Numerical Methods

In order to solve the 2.5 dynamo equations (Eq. 1 & 2) we transform our system of Partial Dif-

ferential Equations(PDEs) to a system of coupled Ordinary Differential Equations(ODEs) by dis-

cretizing the spatial operators using finite differences. For advective terms we use a third order

upwind scheme, for diffusive terms we use a second order space centered scheme and for other

first derivative terms we use a second order space centered scheme. We then use an exponential

propagation method to integrate the equations in time24,33, 34.

Our computational domain comprises the entire solar convection zone and a small section of

the upper radiative region (0.55R� ≤ r ≤ R� and 0 ≤ θ ≤ π). We use a 300 × 500 uniformly
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spaced grid in radius (300 points) and colatitude (500 points). Our boundary conditions are:

A(r, θ = 0) = 0, ∂(rA)
∂r

|r=R� = 0, A(r, θ = π) = 0, A(r = 0.55R�, θ) = 0

B(r, θ = 0) = 0, B(r = R�, θ) = 0, B(r, θ = π) = 0, ∂(rB)
∂r

|r=0.55R� = 0,

(11)

which correspond to a conductive core at r = 0.55R�, a perfect vacuum at r = R� and the rotation

axis in an axisymmetric formulation at θ = 0, π.

9 Sensitivity to Changes in the Simulation Setup

The representative simulation results presented earlier (which we term as the reference solution)

were performed with the parameters and model setup as described in previous sections. Our realis-

tic method of handling solar active regions is a major improvement within the framework of solar

dynamo models and has been demonstrated to capture accurately the observed surface flux trans-

port dynamics leading to polar field reversal7. The internal meridional flow profile that we have

used is based on the best available constraints from helioseismic data20,24 and the standard model

of the solar interior35. In our simulations we have used a peak speed randomly varying between

a reasonable range while keeping the internal profile unchanged and as constrained in MNM0924.

This variation is assumed to be instantaneous in our reference simulations. The internal diffusivity

profile in our simulations is widely used in the community (see the dynamo benchmark study by

Jouve et al.36 and the review by Charbonneau6); however, the assumed value of the turbulent dif-

fusivity coefficient can be different in various simulations. This value sets the diffusive timescale

and determines whether flux transport dynamics is dominated by diffusion or advection by merid-

ional flow17. In this section, we test the robustness of our results to changes in those aspects of our
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model setup which are not well constrained.
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Figure 3: Simulated normalized polar field strength versus cycle overlap at sunspot cycle minimum

in units of days for a run with supergranular diffusivity of 5×1012 cm2/s. Here, Bmax = 9.62×103

Gauss.The results show that even in a high-diffusivity solution, a deep solar minimum with a large

number of spotless days is typically associated with relatively weak polar field strength as indicated

by the reference simulation. Crosses (circles) correspond to data from the Northern (Southern)

solar hemisphere

We first study the impact of varying the meridional flow continuously between the old and

the new random value (as opposed to the instantaneous change in our reference solutions). As

outlined in Tables 1–2, the correlations between cycle overlap, polar field strength and meridional

flow variations remain very similar (both qualitatively and quantitatively) to that obtained earlier in

our reference solution. In fact, in certain cases the correlations become stronger on incorporating
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smoothly varying meridional flows.

Furthermore, we explore the influence of a higher turbulent diffusion coefficient with a new

model run, keeping other ingredients the same as in the reference solution. With a diffusivity co-

efficient five times that of the reference solution in the upper part of the convection zone (which

increases the role of diffusive flux transport in this region) we find that the results remain qualita-

tively similar, although quantitatively somewhat different. The flow speed in the early half of the

cycle (vn−1) still has the maximum impact on the number of spotless days (conversely, cycle over-

lap), although the strength of the correlation is weaker relative to the reference solution. This is

expected as in these model runs, diffusive flux dispersal shares the responsibility of magnetic flux

transport along with meridional circulation thereby somewhat reducing the correlation between

flow speed and cycle overlap. Additionally, we find that the correlation between the polar field

strength and meridional flow speed in these high diffusivity solutions is essentially similar to that

of the reference solution.

Note that the toroidal and poloidal field strength are determined by the threshold for magnetic

buoyancy in these kinematic simulations. In the reference solution we have set Bc = 5×104 Gauss

based on results of thin-flux-tube-simulations. The peak polar (radial) field strength generated in

this simulation is 16.66 × 103 Gauss (9.62 × 103 Gauss for the high-diffusivity solution with the

same Bc). However, full-MHD simulations can self-consistently generate toroidal field strength

only on the order of 1000 Gauss37. We have performed additional runs with a new buoyancy

threshold of Bc = 1000 Gauss (i.e., 1 kilo-Gauss) to explore the consequences of making the
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kinematically simulated toroidal field amplitude on the same order as that in full-MHD simulations.

As indicated in the accompanying tables, the relationship between the nature of solar minima and

flow speed variations remain the same qualitatively as in the reference solution. We also find

that in this case, the peak polar field strength reduces to 147 Gauss. Although low-resolution

magnetograms which measure the (plausibly unresolved) diffuse component of the magnetic field

indicate that the average field strength is on the order of tens of Gauss, recent high resolution

observations from the Hinode space mission shows the existence of strong kilo-Gauss unipolar

(radial) flux tubes in the polar region38, 39. Although, it is not clear whether in reality the strong

kilo-Gauss flux tubes or the much weaker (diffuse) polar field is involved in the regeneration of

the toroidal field, our numerous model runs show that this is a matter of scaling; the underlying

qualitative relationship between the characteristics of solar minima and flow variations remain

similar.

Finally, we explore the correlation between cycle overlap and polar field strength (Table 3).

We find that in the simulation using continuously varying meridional flows, the correlation is ac-

tually stronger in comparison to the reference solution. In the high diffusion case the correlation

between cycle overlap and polar field strength is almost negligible; interestingly, however, a simi-

lar trend to the reference solution is still apparent (Figure 3); cycles with a large number of spotless

days (high negative overlap) have consistently weaker polar field strength.

In summary therefore, we find that the main model results related to the origin of very deep

solar minima is robust with respect to reasonable changes in the simulation setup and assumptions.
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10 A Note on Flow Observations

How do our simulations compare to flow observations related to the minimum of solar cycle 23?

Helioseismic measurements of the equatorward migration of the solar internal torsional oscillation

show that the torsional oscillation pattern of the upcoming cycle 24 (which originated near the

maximum of the preceding cycle) is migrating relatively slowly compared to that of cycle 2340.

Since the torsional oscillation pattern is believed to be associated with the migration of the mag-

netic cycle27, this could be indirect evidence that the meridional flow driving (the toroidal field belt

of) cycle 24 in the solar interior is relatively slow compared to that of the previous cycle; this is in

agreement with our theoretical simulations.

On the other hand, direct surface observations41 indicate that the flow near the surface may

have increased (roughly in a sinusoidal fashion) from the maximum of cycle 23 to its minimum – in

apparent conflict with the earlier, indirect evidence of a slower flow and our simulations. However,

helioseismic measurements indicate that these near-surface flow variations reduce with depth and is

almost non-existent at depths of 0.979 R�42. Therefore we argue that these surface variations may

have no significant impact on the magnetic field dynamics in the solar interior, which is reflected

in their inadequacy in reproducing the very low polar field strength at the minimum of cycle 2328.

In support of our argument, we plot in Figure 4 the depth-dependence of the cumulative poleward

mass flux amplitude in the meridional flow (based on a standard meridional flow profile) and find

that only about 2% of the poleward mass-flux is contained within the surface and a depth of 0.975

R�. Evidently, much of the flux transport dynamics associated with meridional flow occur deeper
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Figure 4: A plot of the cumulative meridional flow mass flux amplitude (between the radius in

question and the surface; y-axis) versus depth (measured in terms of fractional solar radius r/R�;

x-axis). The mass flux is determined from the typical theoretical profile of meridional circulation

used in solar dynamo simulations including the one described here. This estimate indicates that

only about 2% of the poleward mass-flux is contained between the solar surface and a radius of

0.975 R�, a region in which current (well-constrained) observations of the meridional flow is

limited to.

down in the solar interior – as yet inaccessible to observations – probing which is possible using

dynamo simulations such as that outlined here.
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Simulation
Ovrlp. vs. Vn Ovrlp. vs. Vn−1 Ovrlp. vs. ∆Vn−1

r p r p r p

Northern Hemisphere

1. Reference Solution -0.13 93.42% -0.81 99.99% 0.45 99.99%

2. Continuous Flow Variations -0.13 94.28% -0.80 99.99% 0.47 99.99%

3. High Diffusivity -0.17 97.00% -0.38 99.99% 0.15 93.46%

4. Low Buoyant Threshold (1KG) -0.20 99.75% -0.63 99.99% 0.30 99.99%

Southern Hemisphere

1. Reference Solution -0.13 94.53% -0.80 99.99% 0.45 99.99%

2. Continuous Flow Variations -0.13 94.32% -0.79 99.99% 0.46 99.99%

3. High Diffusivity -0.17 96.61% -0.38 99.99% 0.15 93.66%

4. Low Buoyant Threshold (1KG) -0.19 99.65% -0.64 99.99% 0.31 99.99%

Table 1: Correlations for overlap versus meridional flow. (1) The reference solution uses

all the parameters mentioned above and is the one reported in the main manuscript. (2)

In this simulation the flow no longer changes abruptly but undergoes a continuous change

from one value to the other through a ramp function. The slope is set such that the largest

change (15 m/s) takes three years. (3) Solution in which the supergranular diffusivity is

changed from ηsg = 1012 cm2/s to ηsg = 5×1012 cm2/s. (4) Simulation in which the buoyant

threshold is 1 kilo-Gauss (KG).
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Simulation
Br vs. Vn Br vs. Vn−1 Br vs. ∆Vn−1

r p r p r p

Northern Hemisphere

1. Reference Solution 0.45 99.99% -0.83 99.99% 0.87 99.99%

2. Continuous Flow Variations 0.40 99.99% -0.82 99.99% 0.91 99.99%

3. High Diffusivity Solution 0.39 99.99% -0.68 99.99% 0.76 99.99%

4. Low Buoyant Threshold (1KG) 0.43 99.99% -0.74 99.99% 0.78 99.99%

Southern Hemisphere

1. Reference Solution 0.45 99.99% -0.83 99.99% 0.87 99.99%

2. Continuous Flow Variations 0.40 99.99% -0.81 99.99% 0.91 99.99%

3. High Diffusivity Solution 0.38 99.99% -0.68 99.99% 0.75 99.99%

4. Low Buoyant Threshold (1KG) 0.43 99.99% -0.74 99.99% 0.78 99.99%

Table 2: Correlations for polar field strength versus meridional flow. (1) The reference

solution uses all the parameters mentioned above and is the one reported in the main

manuscript. (2) In this simulation the flow no longer changes abruptly but undergoes a

continuous change from one value to the other through a ramp function. The slope is

set such that the largest change (15 m/s) takes three years. (3) Solution in which the

supergranular diffusivity is changed from ηsg = 1012 cm2/s to ηsg = 5 × 1012 cm2/s. (4)

Simulation in which the buoyant threshold is 1 kilo-Gauss (KG).
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Simulation
Br vs. Ovrlp.

r p

Northern Hemisphere

1. Reference Solution 0.46 99.99%

2. Continuous Flow Variations 0.54 99.99%

3. High Diffusivity 0.10 80.02%

4. Low Buoyant Threshold (1KG) 0.32 99.99%

Southern Hemisphere

1. Reference Solution 0.47 99.99%

2. Continuous Flow Variations 0.52 99.99%

3. High Diffusivity 0.12 85.44%

4. Low Buoyant Threshold (1KG) 0.33 99.99%

Table 3: Correlations for polar field strength versus overlap. (1) The reference solution

uses all the parameters mentioned above and is the one reported in the main manuscript.

(2) In this simulation the flow no longer changes abruptly but undergoes a continuous

change from one value to the other through a ramp function. The slope is set such that

the largest change (15 m/s) takes three years. (3) Solution in which the supergranular

diffusivity is changed from ηsg = 1012 cm2/s to ηsg = 5×1012 cm2/s. (4) Simulation in which

the buoyant threshold is 1 kilo-Gauss (KG).
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