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I. BACKGROUND

The low-temperature behaviour of the heavy-fermion
metal YbRh2Si2 was studied by means of thermal and
electrical transport across its field-induced quantum crit-
ical point (QCP). The thermal conductivity of metals is
typically measured down to temperatures in the Kelvin
range.1,2 Because of the low energy scales, measurements
in the heavy-fermion metals have been extended down to
temperatures as low as 0.06K (Ref. 3) or even 0.04K
(Ref. 4). In our case, special efforts have been made to
measure the thermal conductivity at B = 0 and 0.02T
down to 0.025K due to the very low Néel temperature
TN = 0.07K (at B = 0). Furthermore, we have per-
formed substantially more temperature scans for B = 0
in order to reduce the statistical error of the data. At
B = 0.06T, which is close to the critical field Bc, we
were able to measure the thermal conductivity down to
0.04K. At higher fields, the measurements of the thermal
conductivity were performed down to 0.06K.

II. CONTACTS

Previous thermal transport studies pointed out
the strong influence of thermal contact resistances
and demonstrated the necessity of a careful con-
tact preparation.3,5 Subsequent to polishing the
YbRh2Si2 sample (sample 1) for optimization of their
geometry for our measurements, the sample surface was
cleaned in an ultrasonic bath and rinsed in ethanol.
The contact pads were prepared by evaporating a gold
film (thickness of ≈ 50 nm) and applying a lift-off
technique which allowed for optimum pad width and
separation. Gold evaporation was conducted by using
electron beam evaporators in ultra-high vacuum which
turned out to provide superior contacts compared to
thermal evaporation. Gold wires (50μm) were then
attached to the contact pads by silver paint to make
use of the pad area. The silver paint covered an area of
width of about 130μm, which is very small compared
to the distance between the contacts (2.9mm). This
contributes to a systematic standard error of about 4.5%

in the estimation of the geometry factor. It is the same
for all experiments. We did not observe any indication
of diminished thermal conductivity due to contact resis-
tances down to 0.025K. The same contacts were used
for thermal and electrical conductivity measurements.

III. SYSTEMATIC ERRORS

Although most measurements were performed on a
sample cut specifically for thermal transport, sample 1
(4.2×0.5×0.1 mm3), additional electrical resistivity mea-
surements were done on a second sample (sample 2) with
average size 1.7 × 0.41 × 0.06 mm3 from the same piece
of crystal. This was necessary to systematically study
the dependency of the low-T electrical resistivity on the
current, cf. Section IV. Because of the inhomogeneous
thickness of the samples, the geometry factor could not
be determined with very high precision. However, the
measured resistivities could perfectly be rescaled by a

FIG. S1: Temperature dependency of the electrical resistiv-
ities of two YbRh2Si2 single crystals from the same batch.
The data of sample 2 have been multiplied by a factor
1.25±0.03 and corrected by a difference in residual resistivity
of 0.22 μΩcm.
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turned out to provide superior contacts compared to
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width of about 130μm, which is very small compared
to the distance between the contacts (2.9mm). This
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Although most measurements were performed on a
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surements were done on a second sample (sample 2) with
average size 1.7 × 0.41 × 0.06 mm3 from the same piece
of crystal. This was necessary to systematically study
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current, cf. Section IV. Because of the inhomogeneous
thickness of the samples, the geometry factor could not
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FIG. S1: Temperature dependency of the electrical resistiv-
ities of two YbRh2Si2 single crystals from the same batch.
The data of sample 2 have been multiplied by a factor
1.25±0.03 and corrected by a difference in residual resistivity
of 0.22 μΩcm.
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FIG. S2: Temperature dependency of the electrical resistivity
of sample 2. The kink at about 0.07 K indicates the Néel
temperature TN . Below TN a T 2 dependency of the resistivity
is observed as expected6 (cf. inset where the individual curves
are shifted vertically).

factor 1.25 ± 0.03 and corrected by a difference in resid-
ual resistivity of 0.22μΩcm. The former number allows
to estimate the uncertainty in the determination of the
sample dimensions, i.e., the systematic standard error
for the geometry factor. It is about 2.5%, and it is the
same for all measurements. The thermal and electrical
transport coefficients were measured on the same sam-
ple (sample 1) with the same contact configuration, and
the Lorenz ratio L(T )/L0 = ρ(T )/w(T ) is affected by
an additional systematic error of about 4.5% due to the
finite width of the contacts, see Section II. Thus, a to-
tal systematic error of 7% has to be considered, i.e., it
will shift systematically all curves of Fig. 3 of the main
text. This explains why in the region of the field-induced
Fermi-liquid in the phase diagram, e.g., at B ≥ 0.6T
and below T = 0.15K, the difference w(T )− ρ(T ) is not
exactly zero, and the Lorenz ratio does not reach exactly
one.

IV. ELECTRICAL RESISTIVITY

The electrical resistivity ρ(T ) was determined by a
four-point ac-technique in a 3He-4He dilution refriger-
ator down to T ≈ 0.02K. Figure S1 shows the resistivity
data of samples 1 and 2 at B = 0 and 0.1T, respectively.
The data for the second sample, which has a lower resid-
ual resistivity, have been scaled as described above. The
data agree nicely, and we conclude that both samples
show the same overall behaviour. The slightly larger re-
sistivity in the zero-field curve below 0.05K for sample
1 is due to heating effects. Therefore, the second sam-
ple was measured at different currents to investigate the
influence of the current on the curvature of ρ(T ). The
results below 0.1K are displayed in the inset of Fig. S2

FIG. S3: Magnetoresistivity of sample 2 measured with a
current of 5 μA. The upper inset magnifies the low field, low
temperature region of the main panel to emphasize that the
magnetoresistivity is positive inside the AF phase, but ex-
hibits a rapid drop across a crossover field B∗. This is fur-
ther illustrated in the lower inset for our lowest temperature
T = 0.03 K. The rapid crossover across B∗ was systematically
analysed9,10; in the zero-temperature limit, it corresponds to a
sharp jump because the crossover width extrapolates to zero.
The low-temperature data are also consistent with the ex-
istence of a peak in the residual resistivity as a secondary
feature superimposed on the sharp jump, although its inter-
pretation is not clearcut as it may also be associated with the
Néel transition.

plotted as a function of T 2, a temperature dependence
expected below TN = 0.07K for B = 0 (Ref. 6). The
heating effect can be neglected at a current of 5 μA. We
used the resistivity data with this current to evaluate the
Lorenz ratio. As will be shown in a forthcoming paper,7
the heating effect is particularly strong in the vicinity of
Bc. In addition, it is increasing with increasing residual
resistivity ρ0. For a single crystal of very high perfection
with ρ0 ≈ 0.5 μΩ cm, no heating effect could be observed
down to T ≈ 0.02K using a current of 50μA (Ref. 8). In
this case, Δρ ∼ T was observed below T = 0.1K down
to the lowest accessible temperature of 0.02K.

In all samples the magnetoresistivity was measured
and compared to that of the samples investigated in
Refs. 9,10, to assure consistency of the properties ob-
served in our samples with those of the best single crys-
tals grown so far. As an example, the magnetoresistivity
of sample 2 is shown in Fig. S3: At T = 0.03K the change
in resistivity associated with the crossover is about 10%
(see insets of the same figure), as also found in the sam-
ples studied in Ref. 9 (cf. Fig. S5 of the Supporting
Information of Ref. 9). The dominant feature is a rapid
crossover across B∗, corresponding to a jump in the zero-
temperature limit9,10. The isothermal resistivity vs. the
magnetic field at low temperatures are also consistent
with the existence of a peak near B∗ as a secondary fea-
ture superimposed on the sharp jump, although it could
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also be associated with the (classical) Néel transition.

V. THERMAL CONDUCTIVITY

A. Experimental details

The thermal conductivity w(T ) was measured using a
steady-state two-thermometer, one-heater technique in a
3He-4He dilution refrigerator down to T ≈ 0.025 K. The
heat loss along the wires and suspensions for thermome-
ters and heater is estimated to be a factor of 1000 smaller
than the heat flow through the sample. κ was calculated
from the electrical power P released by a resistive heater,
the temperature difference ΔT between two contacts on
the sample and the geometry factor A as κ = A · P/ΔT .
ΔT was measured by two RuO2 resistance thermome-
ters, that were calibrated against the primary (“cold fin-
ger“) sensor during each temperature run, using the re-
sistances measured at zero heating power. A stability
of better than 0.1% of both sample temperature read-
outs was achieved in the entire measurement range. For
each stabilized bath temperature a set of four different
heat currents was applied which results in temperature
gradients ΔT/T = 1% - 7% along the sample. The pro-
portionality between the applied heater power and the
achieved temperature gradients at a constant bath tem-
perature proves that the system is in the regime of linear
response. The resulting raw data of κ were then aver-
aged. Our measurement procedure implies the following
uncertainties: i) The uncertainty in A represents a sys-
tematic error, that shifts all κ(T ) curves by a constant
factor, as described in Section III; ii) the uncertainty in P
is negligible because current and voltage at the heater can
be measured with high accuracy; iii) the uncertainty in
ΔT results from the measurement of the thermometer re-
sistances and from errors in the calibration. Concerning
the last point, two or more temperature runs have been
performed at many fields, each with its own calibration.
For a given field, the calculated κ(T ) values fall on top
of each other within the scattering of the data. There-
fore, the error in the calibration is negligible compared
to the data scattering. In fact, the largest uncertainty
arises from the measurement of the thermometer resis-
tances due to the limited excitation current, especially
at low T . It leads to scattering of the raw data and is
significantly reduced in our final data by averaging over
several points. As error bars we took the standard de-
viation of the raw data as displayed in Figs. 2 and 3 of
the main text as well as Figs. S4 and S5. The system-
atic error due to the sample and contact geometry is not
included, because it results only in a shift of all curves
as explained in Section III. We attribute the observation
of w0 being about 1% larger than ρ0 in the Fermi liquid
regime at high fields (Figs. 2d and S4f) to this systematic
error.

Finally, the noise level in the data of the thermal re-
sistivity increases substantially with increasing magnetic
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FIG. S4: Thermal and electrical resistivity w = L0T/κel ≈
L0T/κ and ρ plotted as a function of temperature, at T ≤
0.5 K for B = 0.02 T a, 0.08 T b, 0.1 T c, 0.2 T d, 0.4 T e
and 0.6 T f (B ⊥ c). The arrows in b through f indicate the
crossover to Fermi-liquid behaviour (cf. Fig. 1a of the main
text). A significant drop is seen in the residual (T → 0) ther-
mal and electrical resistivities when going from B = 0.02 T a
to 0.08 T b and 0.1 T c, which parallels the drop in the isother-
mal magnetoresistivity across Bc (cf. Fig. S3) as previously
observed and attributed to an abrupt increase in the charge
carrier concentration.9,10 Also, the slight rise of the residual
thermal and electrical resistivities upon increasing field (cf. d
through f) confirms the trend observed in Ref. 10 and ascribed
there to the magnetoresistivity in the paramagnetic phase of
YbRh2Si2.

field, as can be directly seen in Fig. S4. It is presum-
ably due to the vibrations of the set-up wires in magnetic
fields. This is the main reason why we could not perform
reliable measurements below 0.06K at fields larger than
0.06T.

B. Phonon contribution

The phonon contribution, κph(T ) , to the measured
thermal conductivity κ(T ) can be separated from the
electronic part, κel(T ) , by avoiding the low-temperature
range where a significant inelastic scattering of the charge
carriers has been evidenced (cf. Fig. 1b of the main text
and Ref. 4).

After having subtracted κel(T )= κWF (T ) =



SUPPLEMENTARY INFORMATION

4  |  W W W. N A T U R E . C O M / N A T U R E

RESEARCH

4
w
−ρ

 (μ
Ω

cm
)

T (K)

0.2 T
0.4 T
0.6 T

−0.2

−0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.1  0.2  0.3  0.4  0.5

b

w
−ρ

 (μ
Ω

cm
)

T (K)

B = 0.02 T
0.08 T
0.10 T

−0.2

−0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.1  0.2  0.3  0.4  0.5

a

L/
L 0

 =
 ρ

/w

T (K)

0.2 T
0.4 T
0.6 T

 0.8

 0.9

 1

 1.1

 0  0.1  0.2  0.3  0.4  0.5

d

L/
L 0

 =
 ρ

/w

T (K)

0.02 T
0.08 T
0.10 T

 0.8

 0.9

 1

 1.1

 0  0.1  0.2  0.3  0.4  0.5

c

FIG. S5: Difference (w − ρ) vs T at B = 0.02 T, 0.08 T and
0.1 T a as well as 0.2 T, 0.4 T and 0.6 T b. c, d Lorenz ratio
L/L0 = ρ/w vs T for the same fields as in a, b. The data for
B = 0.02 T are similar to those for B = 0 (cf. Figs. 3a and
c of the main text). They provide convincing evidence for an
extra heat channel which adds to the one of the electronic
quasiparticles and ist most likely due to AF magnons (see
text). For B = 0.6 T a Fermi-liquid phase forms below T ≈
0.15 K. This can also be anticipated for B = 0.4 T and 0.2 T
and even for B = 0.1 T and 0.08 T at correspondingly lower
crossover temperatures.

L0T/ρ(T ) from κ(T ) for 6K < T < 12K, i.e., as-
suming the validity of the Wiedemann-Franz (WF) law
to hold in this temperature range for the electronic heat
transport, the phonon contribution κph(T ) is found to
follow a T ε dependence with � = 2 ± 0.2. As shown in
Fig. 1b, main text, an extrapolation of this power law to
lower temperatures indicates a negligible κph(T ) below
1K, i.e., within the temperature range of interest in
the present work. The uncertainty in the exponent has
only little effect on the estimated κph(T ) below 5K. The
insignificance of κph(T ) below 1 K is further corroborated
by the almost constant Lorenz ratio L/L0 ≈ 0.86 within
the range 0.5K < T < 1 K, presumably associated with
a measured thermal conductivity of purely electronic
origin. Assuming this Lorenz ratio to extend to above
2K, κel(T )= L T/ρ(T ) can easily be estimated. Sub-
tracting this from the measured κ(T ), the phonon part is
obtained once more. Below about 5 K, κph(T ) obtained
by the latter procedure is found to be in very good
agreement with that from the former one.
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FIG. S6: Temperature coefficient of the B = 0 electronic
thermal conductivity, κel/T , of YbRh2Si2 plotted as a func-
tion of T on a logarithmic scale to emphasize that it follows
a logarithmic behaviour on cooling from 2K to about 0.3 K.

We, therefore, conclude that below about 10K,
κph(T ) of YbRh2Si2 follows a T 2 dependence, as com-
monly expected for a metal in this temperature range due
to dominating phonon scattering from the conduction
electrons.11 A nearly T 2-dependence of κph(T ) has indeed
been observed for several heavy-fermion compounds, e.g.,
CeB6,12 CeNiSn13 and CeAuAl314 in a similar tempera-
ture range. In these systems the dominant phonon wave-
length, λph, is assumed to be shorter than the mean free
path of charge carriers, lel, Ref. 15. This assumption,
thus, appears to hold also for the YbRh2Si2 single crys-
tal studied here. On the other hand, for CeCu2Si2,16
CeAl317 and CeCu6

18 κph(T ) depends almost linearly on
T , which hints at the opposite relation between λph and
lel, i.e., λph > lel, Ref. 15.

C. Electronic contribution

The thermal conductivity obtained by subtracting
κph(T ) from the measured κ(T ) is κel(T ). In Fig. S6 we
show that the temperature coefficient, κel/T , increases
logarithmically upon cooling from T = 2 K to about
0.3K. A corresponding logarithmic divergence was ob-
served also for the Sommerfeld coefficient of the elec-
tronic specific heat, γ = Cel/T ,19,20 and the thermopower
coefficient S/T .21

In the following, we are interested in the correspond-
ing thermal resistivity w(T ) = L0T/κel(T ), which is dis-
played together with ρ(T ), in Fig. 2 of the main text for
four different fields. The results of w(T ) and ρ(T ) for
other magnetic fields are shown in Fig. S4. The data
taken at B = 0.08T through 0.6T are complementary
to those at B = 0.3T and 1 T presented in Figs. 2c
and 2d of the main text. The data at B = 0.02T are
likewise complementary to those at zero field presented
in Fig. 2a of the main text. Like in the zero-field case,
they show a low-temperature downturn in the AF phase
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which contains the magnon contribution to the heat con-
duction. Figure S5 displays the difference w(T ) − ρ(T )
a,b and the ratio ρ(T )/w(T ) = L/L0 c,d for the data
shown in Fig. S4. The existence of a magnon contribu-
tion to the thermal conductivity at B = 0.02T is indi-
cated by (w − ρ) being negative and L/L0 being larger
than one below T ≈ 0.03K, very similar to the results at
B = 0 (cf. Figs. 3a and 3c of the main text). Within the
experimental uncertainties, the data at B = 0.6T indi-
cate Fermi-liquid behaviour and the validity of the WF
law below T ≈ 0.15K. Fermi-liquid behaviour below a
crossover temperature which continuously decreases with
decreasing magnetic field is inferred for both B = 0.4T
and 0.2T b,d. This implies L/L0 → 1 as T → 0, with
which also the results obtained for B = 0.1T and even
0.08T are compatible a,c.

The data for w and ρ measured as a function of tem-
perature for fixed magnetic fields, shown in Fig. 2 of the
main text and Fig. S4, have been used to determine the
isothermal Lorenz ratio as a function of field displayed
in Fig. 3e of the main text. The isothermal field depen-
dence exhibits a minimum near B∗. This striking be-
haviour is also seen in preliminary results obtained from
direct isothermal measurements of w and ρ as a function
of field in a sample with lower residual resistivity22.

D. Magnon contribution

For the measurements performed at B = 0 (Fig. 2a,
main text) as well as 0.02T (Fig. S4a) a downturn in the
thermal resistivity is found below T ≈ 0.1K and T ≈
0.08K, respectively, while at B = 0.06T a similar but
smaller feature occurs below T ≈ 0.07K (Fig. 2b, main
text). One may ascribe this drop in w(T ) to the freezing
out of inelastic scatterings provided by spin fluctuations
in the electronic heat transport. However, while ferro-
magnetic spin fluctuations remain unchanged, antiferro-
magnetic ones grow at sufficiently low temperatures and
magnetic fields, as inferred from NMR Knight shift and
spin-lattice relaxation rate measurements, respectively.23
Therefore, the only natural interpretation of this drop
involves heat carriers which add to the electronic ones.
The existence of a corresponding excess contribution to
the thermal conductivity, Δκ(T ), is proven by our ob-
servation that for B = 0 and B = 0.02 T the thermal
resistivity becomes smaller than the electrical resistivity,
cf. Figs. 2a and S4a. Δκ(T ) adds to κel(T ) which we
assume to be given by L0T/ρ at temperatures well below
TN , i.e., we assume the Wiedemann-Franz law to de-
scribe the electronic transport in the Fermi-liquid phase
well below TN. The observed Δκ(T ) falls into the range
2−5·10−3 W/Km between 0.025 and 0.03K. Because this
value of Δκ is close to the experimental uncertainty, its
temperature dependence is hard to be experimentally de-
termined. Nevertheless, its existence has been confirmed
by repeated measurements. Lattice vibrations are un-
apt to account for this extra thermal conductivity, as the

FIG. S7: Specific heat of YbRh2Si2 , shown as ΔC/T versus
T 2. ΔC(T ) = C(T )−Cph(T )−CQ(T ), where Cph/CQ denotes
the phonon/nuclear quadrupole contribution. The red line
indicates a T 3 contribution to ΔC below 0.05 K.20

largest expected κph , which is limited by the sample di-
mension (≈ 100 μm) and, employing the lattice specific
heat,20 is estimated to be less than 1 ·10−5 W/Km in this
range.

Another potential thermal heat channel is that of AF
magnons. The signature of these spin-wave excitations
was clearly observed 20 in the zero-field specific heat ex-
amined down to T = 0.018K for an YbRh2Si2 single crys-
tal being of similar quality as samples 1 and 2. As seen
in Fig. S7, below T = 0.05K the specific heat can be
described by ΔC = C − Cph − CQ = γT + βT 3, with
Cph and CQ being, respectively, the phonon and the
nuclear quadrupole contributions, γ = 1.64 J/(K2mol)
and β = 132.2J/(K4mol). The huge electronic contribu-
tion Cel = γT denotes a heavy Landau FL phase.20 The
Debye-like term Cm ∼ T 3 is characteristic of the contri-
bution of long-wavelength AF acoustic magnons. In the
framework of the Debye theory and using the measured
β value, we can estimate the “magnetic Debye tempera-
ture”, Θm, and the group velocity vm of the magnons to
be 4.2K and 36m/s, respectively. This Debye temper-
ature corresponds to the AF exchange interaction suit-
ably averaged over the three main spatial directions. The
extracted group velocity is substantially smaller than
that for typical Ce-based heavy-fermion AF metals, e.g.,
about one-tenth of the corresponding value for CeAl2,24
reflecting both the averaging over the spatial directions
as well as the weak Néel order of YbRh2Si2 . The classical
kinetic relation, κm = (1/3)Cmvmlm (lm: magnon mean
free path), allows to estimate the magnon contribution
to the thermal conductivity, κm. In order to obtain a
κm of 2 − 5 · 10−3 W/Km in the range 0.025 − 0.03K as
observed in Fig. 2a of the main text and Fig. S4a, the
corresponding magnon mean free path lm has to be in the
range of 2−13μm. Since in the low-temperature limit lm
is expected to be equal in size to that of the AF domains,
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the latter are estimated to be of the order of a few μm
below about 0.03K which, indeed, is a reasonable order
of magnitude.25

The less pronounced downturn in w(T ) observed be-
low T = 0.07K at B = 0.06T (Fig. 2b, main text) is
ascribed to overdamped AF magnons, which were shown,
via inelastic neutron scattering experiments,26,27 to exist
for antiferromagnetically ordered materials substantially
above the Néel temperature. Heat transport by short-
lived magnon excitations has been reported, e.g., for the
parent compound of the 214 high-Tc cuprates, La2CuO4,
an S = 1/2, 2D antiferromagnet with a Néel tempera-
ture TN ≈ 310K.28 In particular, S = 1 chain systems,
like Y2BaNiO5 (Ref. 29) and Ni(C2H8N2)2NO2(ClO4)
(NENP) (Ref. 30) have served as model systems in this
context.

We would like to note that the magnon contribution
cannot be avoided by performing thermal Hall measure-
ments. In contrast to the case of phonons,2 magnons may
generate a transverse thermal gradient.31

VI. EXTRAPOLATION OF THE LORENZ
RATIO TO ZERO TEMPERATURE IN

QUANTUM CRITICAL SYSTEMS

We now discuss the various isofield and isothermal
scans that are used for the extrapolation of the Lorenz
ratio in the vicinity o a QCP. We will discuss the spe-
cial case that is pertinent to YbRh2Si2, namely a field-
induced QCP separating an AF ordered phase and a
paramagnetic Fermi-liquid phase.

Fig. S8a illustrates different temperature scans in dif-
ferent parts of the phase diagram. Scan A starts from the
quantum critical regime, but runs into the ordered phase;
by construction, it passes through the phase boundary.
The zero-temperature limit of w(T ), ρ(T ) and L(T )/L0

so extrapolated does not reflect the quantum critical be-
havior, but instead only captures that of the ordered
phase. Scan B also starts from the quantum critical
regime, but runs into the low-temperature paramagnetic
Fermi liquid phase; it passes through a crossover temper-
ature. Again, the zero-temperature limit so extrapolated
does not reflect the quantum critical behavior, but in-
stead only captures that of the paramagnetic Fermi liquid
phase. Scan C starts from the quantum critical regime,
and goes all the way to the QCP as the temperature
is lowered. The zero-temperature limit so extrapolated
captures the properties of the QCP. In practice, however,
the same purpose can be achieved by carrying out scans
C1 or C2 (provided there is enough dynamical range in
temperature). These start in the quantum critical regime
but stop before running into the Néel temperature or the
crossover temperature to the paramagnetic Fermi liquid
region. The zero-temperature limit so extrapolated also
manifests the behavior of the QCP.

The different temperature scans will also be mani-
fested in the isothermal properties of L/L0 as a func-

δ

T

QCP

a

b

δ

T

QCP

A C C C B21

b

a

FIG. S8: Isofield a and isothermal b scans for the extrapola-
tion of the Lorenz ratio in the vicinity of a QCP, as described
in detail in the text.

tion of the control parameter, as illustrated in Fig. S8b.
Scan a starts from the paramagnetic Fermi-liquid regime,
and runs into the quantum critical regime. As it passes
through the crossover scale between the two regimes, we
expect to see a crossover in L/L0 in a way that compli-
ments what is seen in the temperature scan B. Scan B
starts from the paramagnetic Fermi-liquid regime, pass-
ing through the quantum critical regime, and runs into
the ordered phase. Because it passes through both the
crossover temperature and the Néel temperature lines,
this isothermal scan will reflect the features of both tem-
perature scan B and temperature scan A.

In this work, our primary focus is on temperature scans
C1 (Figs. 2a, 3a, 3c), scans close to C (Fig. 2b), and
scans C2 (e.g. Figs. S4b and c) through B (Figs. 2c,
2d, 3b, 3d). In addition, isothermal scans a (Fig. 3e) are
conducted. Because of the masking effect of magnons
on the electronic heat transport, we do not attempt to
analyze any scan b. Temperature scans A cannot be
performed in YbRh2Si2 because of the small value of the
critical field Bc.
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QCP B

ZL

FIG. S9: The evolution of the quasiparticle weights across a
heavy-fermion spin-density-wave quantum critical points. ZL

of the large Fermi surface stays nonzero as the system is tuned
through the QCP.

VII. THEORETICAL ASPECTS

The validity of the WF law in the vicinity of a heavy-
fermion spin-density-wave QCP was briefly discussed in
the main text. Across such a QCP, the heavy quasiparti-
cles remain intact in the main part of the Fermi surface.
In these “cold” regions, the quasiparticles do not experi-
ence scattering by the AF spin fluctuations, and their
spectral weight—the quasiparticle residue Z—stays fi-
nite as the control parameter moves through the QCP
(Fig. S9). L/L0 must be equal to one in this case. Even
the contributions from the “hot” regions, which expe-
rience scatterings by the bosonic collective fluctuations,
cannot violate the WF law, as was illustrated by the case
of ZrZn2 (Ref. 1) where ferromagnetic fluctuations influ-
ence the entire Fermi surface.

This is in contrast to the Kondo-destroying local quan-
tum critical description which is illustrated in Fig. 4 of
the main text. In the paramagnetic Fermi-liquid state,
the conduction electron self-energy, Σ(k, ω, T ) contains
a pole at the Kondo-resonance energy. It converts the
f -moments into a part of the Landau quasiparticles,
thereby creating a large Fermi surface. The quasipar-
ticle residue at the large Fermi momenta, kkkL

F, is nonzero,
ZL(kkkL

F, ω = 0, T = 0) �= 0. In the AF Fermi-liquid state,
the Kondo resonance is destroyed. The Fermi surface
is given by that of the conduction electrons only in the
presence of a staggered magnetic field. Away from the
“hot spots”, there are Landau quasiparticles associated
with a small Fermi surface. The quasiparticle residue
at such generic small Fermi momenta, kkkS

F, is nonzero,
ZS(kkkS

F, ω = 0, T = 0) �= 0.
In these Fermi-liquid regimes, both the electrical and

electronic heat currents are predominantly carried by
Landau quasiparticles. At nonzero temperatures, the
electronic heat carriers experience inelastic scatterings.
Because the non-Umklapp processes are considerably
more efficient in relaxing electronic heat current than

electrical current, even in anisotropic systems at low
temperatures, the electron-electron scatterings lead to
an electronic Lorenz ratio Lel/L0 < 1 at nonzero tem-
peratures.32 The effect is similar to the usual case of
electron-phonon scattering.11 The Umklapp scatterings
are expected to contribute equally efficiently to the ther-
mal and electrical resistivities. In the zero-temperature
limit, well-defined quasiparticles remain, but the inelas-
tic scatterers are frozen out; only the elastic scattering
processes remain, and Lel/L0 is equal to 1. This is illus-
trated in Fig. S10, where Lel/L0 reaches 1 as the system
moves away from the QCP (at Bc) into the Fermi-liquid
regimes on both sides.

In the quantum critical regime, low-energy electronic
excitations occur at both the small and large Fermi sur-
faces (Fig. 4, main text). The single-electron self-energy
at both kkkS

F and kkkL
F vanishes at the ω = 0 and T = 0 limit,

but has the scaling form as a function of ω and T as given
in Eq. 1 (main text). This reflects the fluctuations of the
Fermi surfaces, which characterize the quantum fluctu-
ations in the entire quantum critical regime. We will
consider the electrical and heat currents carried by the
electronic excitations at both kkkS

F and kkkL
F, all of which are

non-Fermi liquid in nature as specified by Eq. 1. These
electronic current carriers are subject to inelastic scat-
terings that are associated with the quantum criticality.
While such scattering processes are many-body in na-
ture, they can still be divided into Umklapp and non-
Umklapp processes. The non-Umklapp processes will
contribute considerably more to the thermal resistivity
than to the electrical resistivity. As a result, Lel/L0 will
be less than 1.

The end result is a dip of Lel/L0 near Bc. Fig. S10
illustrates the corresponding isothermal behaviour of
Lel/L0 for a given nonzero but low T , where the dip
is expected to be centered at B∗(T ) = B(T ∗), cf. Fig 1a
of the main text. As T → 0, the dip becomes abrupt at
Bc.

el

1
∗B B

0/L L

FIG. S10: Expected isothermal behaviour of the Lorenz ra-
tio across a Kondo-destroying QCP. B∗(T ) = B(T ∗) is the
Kondo breakdown scale at a nonzero but small T . At zero
temperature an abrupt dip occurs at B∗ = Bc
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