
W W W. N A T U R E . C O M / N A T U R E  |  1

SUPPLEMENTARY INFORMATION
doi:10.1038/nature11265

Supplementary Information for
“Quantum Phase Transition in a Resonant Level Coupled to Interacting Leads”

Henok T. Mebrahtu, Ivan V. Borzenets, Dong E. Liu, Huaixiu Zheng, Yuriy V. Bomze,
Alex I. Smirnov, Harold U. Baranger, Gleb Finkelstein

Department of Physics, Duke University, Durham, NC 27708 and
Department of Chemistry, North Carolina State University, Raleigh, NC 27695

(Dated: May 23, 2012)

I. NANOTUBE QUANTUM DOTS

The nanotubes are grown by chemical vapor deposition
from a CH4 feedstock gas [1] on a Si/SiO2 substrate coated
with Fe/Mo catalyst nanoparticles [2, 3], usually producing
nanotubes with diameters of about 2 nm. Individual nanotubes
are contacted by metallic leads, thereby forming quantum
dots, and controlled by three gates: a back gate that changes
the number of electrons in the nanotube and two side gates
(SG1 and SG2), located closer to either the source or the drain
electrodes. Applying the side gate voltage VSG modifies the
relative strength of tunneling from the nanotube to the source
and the drain. It turns out that it is sufficient to bias only one
of the side gates, as done in this paper.

Figure 1B of the main text shows a typical plot of the nan-
otube conductance vs. gate voltage (the “Coulomb blockade
pattern”). A group of 4 peaks of similar height is visible on the
left, corresponding to filling a 4-electron “shell” [4, 5]. The
peaks in the group are separated from neighboring groups by
wider Coulomb blockade valleys Y and Z, in which an inte-
ger number of shells is completely filled. In this regime, the
electron transport through the nanotube is determined by the
co-tunneling processes (Figure S1), which are almost energy-
independent on the energy scales smaller than the charging
energy or the level spacing (i.e. meV’s). In this case, the

Figure S 1: Schematic: an energy diagram of a Coulomb blockade
valley, in which an integer number of 4-electron shells is filled (like
valleys Y or Z in Figure 1 of the main text). Cotunneling is the
dominant process that contributes to the electron transport through
the quantum dot: an electron from the source can virtually occupy
a high energy orbital in the dot and then tunnel out; alternatively an
electron can tunnel out of a filled orbital, followed by an electron
from the lead filling the empty state.

nanotube essentially behaves as a lumped tunnel junction. As
discussed below and in the main text, this allows us to in situ
characterize the suppression of tunneling conductance due to
the resistive leads (Figures 1C-D of the main text).

II. DISSIPATIVE ENVIRONMENT

The strength of dissipation in the resistive leads is charac-
terized by r = e2R/h, where R is the total resistance of the
two leads. The leads are made from a Cr/Au (10nm/1nm ) film
with a resistivity of 75 Ω/�, and their total room temperature
resistance is estimated at ∼ 6.5 kΩ for the sample shown in
Figure 1 of the main text, and ∼ 17 kΩ for the sample shown
in Figures 2-3. These numbers yield r ∼ 0.25 for the first
sample, and r ∼ 0.65 for the second sample. However the
film resistivity increases by at least 10% at low temperature,
making these estimates consistent with r = 0.3 we extract in
Figure 1D for the first sample, and r = 0.75 extracted for the
second sample (see the next paragraph).

According to the theory of tunneling with dissipation (also
referred to as “environmental Coulomb blockade” [6–12]), in
order to determine the dissipation strength, one has to con-
sider the impedance of the whole circuit at frequencies cor-
responding to temperature or bias (i.e. �ω ∼ kBT or eV ).
In our case, this frequency range extends from ∼ 1 GHz up
to ∼ 100 GHz. The lithographically made resistive leads
connect the nanotubes to much larger pads (hundreds of mi-
crons on a side), whose capacitance short-circuits the high fre-
quency fluctuations. Therefore, only the on-chip resistance of
the leads contributes to dissipation. We also estimate that the
distributed capacitance of the resistive leads can be neglected
in this frequency range, so that the leads behave as simple fre-
quency - independent resistors.

We choose to demonstrate two different aspects of the ob-
served behavior in two samples. The sample shown in Figure
1 has the smaller dissipation strength of r = 0.3, resulting
in the striking cusp G ∝ |V |2r in Figure 1C. In Figures 2-
4, we extract the peak width proportional to T r/(r+1). The
relatively large dissipation strength of this sample is required
to distinguish this non-trivial exponent a from the dependence
T r predicted by the lower-order theoretical considerations.

Tunneling current I(V, T ) through a single tunneling bar-
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rier in the case of Ohmic dissipation was obtained in Ref. [12]:

I(V, T ) ∝ V T 2r

∣∣∣∣
Γ[r + 1 + i eV

2πkBT ]

Γ[1 + i eV
2πkBT ]

∣∣∣∣
2

(1)

We numerically differentiate this expression with respect to V

to fit the data in Figure 1d of the main text.

III. ESTIMATES OF THE EXPONENTS

Asymmetric peak height. Figure 3A shows the temperature
dependence of the peak height for various degrees of asym-
metry between the tunneling rate from the level to the source
and the drain electrodes, ΓS and ΓD. Depending on the asym-
metry, the peak conductance exhibits a range of cross-over be-
haviors. For peaks with low degree of asymmetry (such that
|ΓS −ΓD| ∼ kBT � |ΓS +ΓD|, top curves), the proper tem-
perature scaling of conductance is not yet fully developed, so
care must be taken to avoid extracting an incorrect exponent.
Hence we study the conductance scaling of the most asymmet-
ric peak of Figure 3A (reproduced here in Figure S2), which
demonstrates a fully developed power-law behavior in the ac-
cessible temperature range. A linear curve is fitted to the data
on a log-log scale in the temperature range of 0.08 K < T <

1.2 K. The extracted slope of 1.47 ± 0.04 corresponds to the
value of r = 0.74± 0.02.
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Figure S2: Conductance of an asymmetrically coupled peak vs. tem-
perature (same data as the lowest curve in Figure 3A), and the power-
law fit. The uncertainty in the data points is about the symbol size.

Symmetric resonance width. The full-width at half-
maximum (FWHM) of the symmetric peak (Figure 2A) is
plotted in Figure S3. The fit shown in red yields an expo-
nent of 0.43 ± 0.01, surprisingly close to the expected value

of r/(r + 1) ≈ 0.43. (In order to avoid over-estimating the
exponent, the T > 1 K data points are not included in the fit.
This higher temperature range corresponds to the transition to
the sequential tunneling regime kBT � Γ, in which case the
peak width becomes proportional to T .)
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Figure S3: Full-width at half-maximum extracted from the symmet-
ric peak in Figure 2B. In order to exclude the contribution from the
sequential tunneling regime kBT � Γ, only the data points mea-
sured at T < 1 K are used for the fit shown in red (see text). The
vertical axis has to be multiplied by the experimentally determined
”gate efficiency factor” of ≈ 0.2, which converts ∆Vgate units to the
actual energy of the resonant level (see e.g. Ref [13]).

Before proceeding to the theoretical model, we note that
our observations cannot be explained by the conventional
Lorentzian expression for the resonance conductance be-
tween non-interacting leads [14]. First, the line shape of
the resonances is not Lorentzian. Second, even if one
tries to describe the symmetric case by a Lorentzian with
temperature-dependent tunneling rates ΓS,D(T ), in the asym-
metric case the same expression would also yield a peak with
a temperature-independent height and a vanishing width, in
marked contrast with our measurements in Fig. 2c.

3

IV. MODEL

We model our experimental situation by a spinless level
coupled to two conducting leads in the presence of an Ohmic
dissipative environment (Figure S4). As we show in the fol-
lowing, the electromagnetic modes of the environment medi-
ate interactions between the electrons in the leads, resulting
in a Luttinger liquid-like behavior. We start with a system
Hamiltonian given by

H = HDot +HLeads +HT +HEnv (2)

and describe the individual terms in this section. HDot =

εdd
†d is the Hamiltonian of the dot with the energy level

εd and the electron creation operator d†. HLeads =∑
α=S,D

∑
k εkc

†
kαckα represents the electrons in the source

(S) and drain (D) leads.
HT describes the tunneling between the dot and the leads:

HT = VS

∑
k

(c†kSe
−iϕSd+) + VD

∑
k

(c†kDeiϕDd+ h.c.),

(3)
where the operators ϕS/D represent the phase fluctuations of
the tunneling amplitude between the dot and the S/D lead.
These phase operators are canonically conjugate to the op-
erators QS/D corresponding to charge fluctuations on the S/D
junctions. This is a standard way to treat macroscopic quan-
tum tunneling in the presence of a dissipative environment [8],
which is valid for electrons propagating much slower than the
electromagnetic field [15].

It is useful to transform to variables related to the total
charge on the dot. To that end, we introduce [8] two new
phase operators, ϕ and ψ, related to the phases ϕS/D by

ϕS = κSϕ+ ψ

ϕD = κDϕ− ψ , (4)

where κS/D = CD/S/(CS +CD) in terms of the capcitances
of the two dots, CS/D. ψ is the variable conjugate to the fluc-
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Figure S 4: Schematic: a spinless quantum dot is coupled to two
conducting leads with tunneling amplitudes VS and VD . The dot-
leads system is attached to a voltage source V via R, the sum of the
lead resistances.

tuations of charge on the dot Qc = QS −QD and so couples
to voltage fluctuations on the gate which controls the energy
of the dot’s level. Likewise, ϕ is the variable conjugate to
Q = (CSQD + CDQS)/(CD + CS). Assuming CS = CD,
we have ϕS = ϕ/2 + ψ and ϕD = ϕ/2− ψ.

The gate voltage fluctuations can be disregarded in our ex-
periment because the capacitance of the gate is negligible,
Cg � CS/D. (The opposite limit of a noisy gate coupled
to a resonant level was considered in Ref. 16.) In fact, for our
purposes, the coupling of the fluctuations of the total charge
on the dot to the environment can be neglected. Thus, only
the relative phase difference between the two leads remains
[8, 17], and the tunneling Hamiltonian becomes

HT = VS

∑
k

(c†kSe
−iϕ

2 d+ h.c.) + VD

∑
k

(c†kDei
ϕ
2 d+ h.c.).

(5)
The last part of Eq. (2) is the Hamiltonian of the environ-

ment, HEnv [8, 18, 19]. The environmental modes are repre-
sented by harmonic oscillators described by inductances and
capcitances such that their frequencies are given by ωn =

1/
√
LnCn. These oscillators are then bilinearly coupled to

the phase operator ϕ through the oscillator phase:

HEnv =
Q2

2C
+

N∑
n=1

[
q2n
2Cn

+

(
�
e

)2
1

2Ln
(ϕ− ϕn)

2

]
. (6)

V. MAPPING TO LUTTINGER LIQUIDS

In this section, we demonstrate the mapping of our model
to that of a resonant level contacted by two Luttinger liquids.
In carrying out this mapping, we follow closely previous work
on tunneling through a single barrier with an environment [20,
21] and the Kondo effect in the presence of resistive leads
[17].

The two metallic leads in our case can be reduced to two
semi-infinite one-dimensional free fermionic baths, which are
non-chiral [22]. By unfolding them, one can obtain two chi-
ral fields [22], which both couple to the dot at x = 0. We
bosonize the fermionic fields in the standard way [22, 23]
cS/D(x) = 1√

2πa
FS/D exp[iφS/D(x)]. Here, FS/D is the

Klein factor, φS/D is the bosonic field, and a is the short time
cutoff. Defining the flavor field φf and charge field φc by

φf ≡ φS − φD√
2

, φc ≡
φS + φD√

2
, (7)

we rewrite the Hamiltonian of the leads as

HLeads =
vF
4π

∫ ∞

−∞
dx

[
(∂xφc)

2
+ [(∂xφf )

2
]
. (8)

The tunneling Hamiltonian then becomes
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HT = VS

(
1√
2πa

FS exp
[
−i

φc(0) + φf (0)√
2

]
e−iϕ

2 d+ h.c.

)

+ VD

(
1√
2πa

FD exp
[
−i

φc(0)− φf (0)√
2

]
ei

ϕ
2 d+ h.c.

)
. (9)

Note a key feature of HT: the fields ϕ and φf (0) enter in the same way. Thus we wish to combine these two fields, a process
which will lead to effectively interacting leads as in a Luttinger liquid.

To carry out such a combination, since the tunneling only acts at x = 0, it is convenient to perform a partial trace in the
partition function and integrate out fluctuations in φc/f (x) for all x away from x = 0 [24]. For an Ohmic environment, one can
also integrate out the harmonic modes [17, 19, 20]. Then, the effective action for the leads and the environment becomes

Seff
Leads+Env =

1

β

∑
n

|ωn|
(
|φc(ωn)|2 + |φf (ωn)|2 +

RQ

2R
|ϕ(ωn)|2

)
, (10)

where RQ = h/e2, R is the total resistance of the leads, and ωn = 2πn/β is the Matsubara frequency. In this discrete
representation, it is straightforward to combine the phase operator ϕ and the flavor field φf ; in order to maintain canonical
commutation relations while doing so, we use the transformation

φ′
f ≡ √

gf

(
φf +

1√
2
ϕ

)
, ϕ′ ≡ √

gf

(√
R

RQ
φf −

√
RQ

R

1√
2
ϕ

)
, (11)

where gf ≡ 1/(1 +R/RQ) < 1. Now, the effective action for the leads and environment (excluding tunneling) becomes

Seff
Leads+Env =

1

β

∑
n

|ωn|
(
|φc(ωn)|2 + |φ′

f (ωn)|2 + |ϕ′(ωn)|2
)
, (12)

while the Lagrangian for the tunneling part reads

LT = −VS

(
FS√
2πa

e
−i 1√

2gc
φc(τ)e

−i 1√
2gf

φ′
f (τ)

d+ c.c.

)
− VD

(
FD√
2πa

e
−i 1√

2gc
φc(τ)e

i 1√
2gf

φ′
f (τ)

d+ c.c.

)
. (13)

(Here, we have formally introduced the parameter gc = 1

to describe the noninteracting field φc.) Indeed, we see that
the phase ϕ has been absorbed into the new flavor field φ′

f at
the expense of a modified interaction parameter gf , while the
new phase fluctuation ϕ′ decouples from the system. In what
follows, we will drop the prime from the operator φ′

f .

It turns out that one obtains a very similar effective ac-
tion by starting from a model with resonant tunneling between
Luttinger liquids [24, 25]. The two models are equivalent if
the interaction parameters gc and gf in our model are made
equal to the single interaction parameter g of Ref. 24. Similar
mappings were obtained for a spinful model in the absence
of charge fluctuations (Kondo regime) in Ref. 17 and for a
dissipative dot coupled to a single chiral Luttinger liquid in
Ref. 21.

As discussed in the main text, the r = 0 case (gf = 1)
reduces to a resonant level without dissipation, while the r =

1 case (gf = 1/2) can be mapped onto the two-channel Kondo
model. To understand the relation between our model and the

two-channel Kondo model, we apply a unitary transformation
[26, 27], U = exp[i(d†d − 1/2)φc(0)/

√
2], to eliminate the

φc field in the tunneling Lagrangian, Eq. (13). At the same
time, an extra electrostatic Coulomb interaction between the
leads and the dot is generated. Introducing in addition a bare
electrostatic Coulomb interaction (Ub), we have

HC =

√
2

π
(Ub − 1)(d†d− 1/2)∂xφc(x = 0) . (14)

For the special value gf = 1/2, we can refermionize the prob-
lem by defining ψc,f = eiφc,f /

√
2πa. Then, at VS = VD (and

r = 1), our model is mapped onto the two-channel Kondo
model [26–29], which shows non-Fermi-liquid behavior [30].
At the Toulouse point (Ub = 1 so that HC = 0), the model
reduces to a Majorana resonant level model [26, 30]. Finally,
for r close to 1 ( i.e. in our case), one can similarly map
our system onto a two-channel Kondo model with (interact-
ing) Luttinger liquid leads [28, 29]. The effective interaction
parameter gσ in this case is determined by the residual 1− r.
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VI. QUANTUM PHASE TRANSITION AND SCALING
RELATIONS

Having established the relation between our problem and
Luttinger liquid physics, we can draw on the very extensive
theoretical work concerning resonant tunneling in a Luttinger
liquid [24, 27, 31–35] to reach conclusions about the scal-
ing and phase transitions implied by our model. To under-

stand how the interacting environment affects the low temper-
ature physics, it is convenient to rewrite the model, following
Refs. 24 and 36, in the “Coulomb-gas” representation, which
can be accomplished by expanding the partition function in
powers of VS and VD. After integrating out φf (τ) and φc(τ)

in each term, one obtains a classical one-dimensional statisti-
cal mechanics problem with the partition function

Z =
∑
σ=±

∑
n

∑
{qi=±}

V
∑

i(1+qipi)/2
S V

∑
i(1−qipi)/2

D

×
β∫

0

dτ2n

τ2n∫

0

dτ2n−1......

τ2∫

0

dτ1 exp
{∑

i<j

Vij

}
exp


εd

[
β
1− σ

2
+ σ

∑
1≤i≤2n

piτi

]

 ,

Vij =
1

2gf
[qiqj +K1pipj +K2(piqj + pjqi)] ln

(
τi − τj

τc

)
. (15)

We consider the on-resonance case, εd = 0, so that the last
term in the partition function is equal to 1. There are two types
of charges in this 1D problem [24]: qi charge and pi charge,
both of which can be ±1. The total system is charge neutral,∑

i qi =
∑

i pi = 0. Physically, the qi charge corresponds to
a tunneling event between the dot and the leads (+1 : to the
right (D); −1: to the left (S) ). The pi charge corresponds to
hopping onto (+1) or off (−1) the dot.

Following the method developed for resonant tunneling be-
tween Luttinger liquids in Ref. 24, one obtains the renormal-
ization group (RG) equations and the phase diagram. The sign
of the pi charge must alternate in time, while the qi charge
can have any ordering satisfying the charge neutrality con-
straint. Therefore, the interaction between the qi charges does
not vary in the RG flow, while the interaction strength be-
tween pi charges, K1, does renormalize. The bare K1 (initial
value in RG flow) is Kbare

1 = gf/gc; in fact, by taking into
account the coupling of the fluctuations of the total dot charge
to the environment—an effect neglected here—one can show
that Kbare

1 = 1 [37]. The bare value of K2 is zero, but it will
be generated in the RG flow. These are the same conditions
as in resonant tunneling between two Luttinger liquids [24].
Hence, our model is mapped onto the model of resonant tun-
neling between Luttinger liquids, with the RG equations for
the interaction strengths and tunneling couplings as in Ref. 24.

The resulting schematic RG flow diagram in the VS-VD

plane, valid for r < 1 and on-resonance, is shown in Figure
S5. A remarkable feature of this RG flow diagram is that a sec-
ond order quantum phase transition can be realized by tuning
the tunneling matrix element across the symmetric coupling

side gate 

Figure S 5: Schematic representation of the renormalization group
flow for the two tunneling amplitudes, VS and VD [24]. The diago-
nal corresponds to the symmetric coupling case, and flows into the
strongly coupled quantum critical point at (1,1) which corresponds
to a single homogeneous Luttinger liquid. Point (1,0) describes the
strong coupling point for VS , while VD = 0; similarly, point (0,1)
describes the strong coupling point for VD , while VS = 0.

line, VS = VD. Indeed, this critical value separates the flows
terminating in the stable fixed points denoted as (0, 1) and
(1, 0) in Figure S5. These two phases correspond to the dot
merging with the D lead, while the S lead decouples, or vice
versa. The unstable fixed point denoted as (1, 1) is reached
starting exactly at VS = VD; it corresponds to a homogeneous
Luttinger liquid which therefore has conductance G = e2/h
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[24, 31].
The proximity to the strongly coupled point (1, 1) deter-

mines the quantum critical behavior and the critical expo-
nents observed in the experiment. By analyzing the univer-
sal scaling function [24], the width of the resonant peak is
found to scale to zero as Γ ∝ T 1−gf = T r/(1+r). For the
case of asymmetric tunneling VS �= VD, either VS or VD

flows to zero so that the height of the resonant peak scales
as G ∝ T 2(1/gf−1)= = T 2r [24], while the width of the reso-
nance saturates [27, 33, 34].

These power-law dependencies are typical for the critical
behavior near a second-order phase transition. We would

like to stress that this behavior qualitatively differs from the
Kosterlitz-Thouless (KT) type of transition, commonly en-
countered in quantum impurity models [38]. For example,
several recent theoretical works predict KT transitions in
quantum dots coupled to a single interactive lead [39–43].
There, the QPT occurs when the dissipation exceeds a certain
critical value. In our case, the crucial ingredient that enables
the QPT is the symmetric coupling to the two leads, which al-
lows for their competition, while the dissipation strength can
be relatively weak (but greater than zero).
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