
W W W. N A T U R E . C O M / N A T U R E | 1

SUPPLEMENTARY INFORMATION
doi:10.1038/nature11875

Method for Encoding and Decoding Arbitrary
Computer Files in DNA Fragments

1 Encoding

1.1: An arbitrary computer file is represented as a string S̸0 of bytes (often

interpreted as a number between ̸0 and 28− 1, i.e. a value in the set {̸0 . . . 255})∗.

1.2: S̸0 is encoded using a given Huffman code, converting it to base-3. This

generates the string S1 of characters in {̸0, 1, 2}, each such character called a

‘trit’.

1.3: Write len() for the function that computes the length (in characters) of a

string, and define n = len(S1). Represent n in base-3 and prepend ̸0s to generate

a string S2 of trits such that len(S2) = 2̸0. Form the string concatenation S4 =

S1 . S3 . S2, where S3 is a string of at most 24 ̸0s chosen so that len(S4) is an integer

multiple of 25.

1.4: S4 is converted to a DNA string S5 of characters in {A,C,G,T} with no

repeated nucleotides (nt) using the scheme illustrated in Figure 1. (The first trit

of S4 is coded using the ‘A’ row of the table. For each subsequent trit, characters

are taken from the row defined by the previous character conversion.)

Figure 1: Base-3 to DNA encoding ensuring no repeated nucleotides.
For each trit t to be encoded, select the row labelled with the previous nt used
and the column labelled t and encode using the nt in the corresponding table cell.

1.5: Define N = len(S5), and let ID be a 2-trit string identifying the original file

and unique within a given experiment (permitting mixing of DNA from different
∗̸0 is used throughout to represent the number zero, to avoid confusion with letters o and O.

1

SUPPLEMENTARY INFORMATION

2 | W W W. N A T U R E . C O M / N A T U R E

RESEARCH

files S̸0 in one experiment). Split S5 into overlapping segments of length 1̸0̸0 nt,

each offset from the previous by 25 nt. This means there will be N
25

− 3 segments,

conveniently indexed i = ̸0 . . . N
25
− 4; segment i is denoted Fi and contains (DNA)

characters 25i . . . 25i+ 99 of S5.

Each segment Fi is further processed as follows:

1.6: If i is odd, reverse complement Fi.

1.7: Let i3 be the base-3 representation of i, appending enough leading ̸0s so

that len(i3) = 12. Compute P as the sum (mod 3) of the odd-positioned trits

in ID and i3, i.e. ID1+ i3 1+ i3 3+i3 5+i3 7+i3 9+i3 11. (P acts as a ‘parity trit’—

analogous to a parity bit—to check for errors in the encoded information about

ID and i.)

1.8: Form the indexing information string IX = ID . i3 .P (comprising 2+12+1 =

15 trits). Append the DNA-encoded version of IX to Fi using the same strategy as

at step (1.4) above, starting with the code table row defined by the last character

of Fi, to give indexed segment F ′
i .

1.9: Form F ′′
i by prepending A or T and appending C or G to F ′

i—choosing

between A and T, and between C and G, randomly if possible but always such

that there are no repeated nt. (This ensures that we can distinguish a DNA

segment that has been reverse complemented during DNA sequencing from one

that has not—the former will start with G|C and end with T|A; the latter will

start A|T and end C|G.)

See Figure 2 for a schematic representation of the DNA-encoding of computer

files.

1.10: The segments F ′′
i are synthesized as actual DNA oligonucleotides and stored,

and may be supplied for sequencing.

2 Example

2.1: As it is difficult to represent all possible bytes in this document, we use

a simple example of a file comprising just 18 bytes that happen to be easily

2

W W W. N A T U R E . C O M / N A T U R E | 3

SUPPLEMENTARY INFORMATION RESEARCH

Figure 2: Schematic of DNA-fragment-encoding of computer files. The
computer file (in any format, e.g. binary or text) shown in blue in (a) (step 1.1
above) is encoded in base-3 (red in b; 1.2–1.3) and then as DNA with no repeated
nt (green in c; 1.4). This representation of the complete file is then split into
overlapping segments (1.5), alternate segments reverse complemented (mauve;
1.6), and segment indexing and direction-determining information added (yellow;
see d; 1.7–1.9).

represented via ASCII codes (for clarity, we show spaces as ␣):

S̸0 = Birney␣and␣Goldman

2.2: Using the Huffman code defined in the example file View_huff3.cd, we

convert the bytes of S̸0 (shown above/below S1 for illustrative purposes) into

base-3†:
†Throughout what follows, spaces are not part of base-3 or DNA strings but are included to

assist in ‘reading’ how strings have been derived in each step.

3

SUPPLEMENTARY INFORMATION

4 | W W W. N A T U R E . C O M / N A T U R E

RESEARCH

B i r n e y ␣ a n

S1 = 2̸01̸0̸0 2̸021̸0 1̸01̸01 ̸ 0̸0̸021 2̸0̸0̸01 222111 ̸02212 ̸01112 ̸ 0̸0̸021

221̸0̸0 ̸02212 222212 ̸0211̸0 ̸021̸01 221̸0̸0 11̸021 ̸01112 ̸ 0̸0̸021

d ␣ G o l d m a n

2.3: n = len(S1) = 92, which is 1̸01̸02 in base-3. So:

S2 = ̸ 0̸0̸0̸0̸0̸0̸0̸0̸0̸0̸0̸0̸0̸0̸0 1̸01̸02 (length 2̸0)

S3 = ̸ 0̸0̸0̸0̸0̸0̸0̸0̸0̸0̸0̸0̸0 (length 13)

S4 = S1 . S3 . S2

= 2̸01̸0̸02̸021̸01̸01̸01̸0̸0̸0212̸0̸0̸01222111̸02212̸01112̸0̸0̸021

221̸0̸0̸02212222212̸0211̸0̸021̸01221̸0̸011̸021̸01112̸0̸0̸021

̸ 0̸0̸0̸0̸0̸0̸0̸0̸0̸0̸0̸0̸0 ̸ 0̸0̸0̸0̸0̸0̸0̸0̸0̸0̸0̸0̸0̸0̸01̸01̸02

(length 92 + 13 + 2̸0 = 125 = 5× 25)

2.4: Using the DNA coding strategy and table shown at step (1.4) above, convert

S4 to DNA:

S5 = TAGTATATCGACTAGTACAGCGTAGCATCTCGCAGCGAGATACGCTGCTACGCAGCATGCTGT

GAGTATCGATGACGAGTGACTCTGTACAGTACGTACGTACGTACGTACGTACGTACGACTAT

2.5: N = len(S5) = 125, and we choose (e.g.) ID = 12. S5 will be split into

overlapping segments Fi of length 1̸0̸0 nt for i ∈ {̸0 . . . 125
25

− 4}, i.e. i ∈ {̸0, 1}.

With overlapping parts underlined for illustration, F̸0 and F1 are:

F̸0 = TAGTATATCGACTAGTACAGCGTAG CATCTCGCAGCGAGATACGCTGCTA

CGCAGCATGCTGTGAGTATCGATGA CGAGTGACTCTGTACAGTACGTACG

4

W W W. N A T U R E . C O M / N A T U R E | 5

SUPPLEMENTARY INFORMATION RESEARCH

F1 = CATCTCGCAGCGAGATACGCTGCTA CGCAGCATGCTGTGAGTATCGATGA

CGAGTGACTCTGTACAGTACGTACG TACGTACGTACGTACGTACGACTAT

2.6: Only i = 1 is odd, so F1 is reverse complemented:

F1 = ATAGTCGTACGTACGTACGTACGTACGTACGTACTGTACAGAGTCACTCG

TCATCGATACTCACAGCATGCTGCGTAGCAGCGTATCTCGCTGCGAGATG

2.7: For i = ̸0, i3 = ̸ 0̸0̸0̸0̸0̸0̸0̸0̸0̸0̸0̸0 (length 12) and the sum (mod 3) of the odd-

positioned trits of ID and i3 is P = 1 + ̸0 + ̸0 + ̸0 + ̸0 + ̸0 + ̸0 (mod 3) = 1. For

i = 1, i3 = ̸ 0̸0̸0̸0̸0̸0̸0̸0̸0̸0̸01 and P = 1 + ̸0 + ̸0 + ̸0 + ̸0 + ̸0 + ̸0 (mod 3) = 1.

2.8: For i = ̸0, IX = ID . i3 .P = 12 ̸ 0̸0̸0̸0̸0̸0̸0̸0̸0̸0̸0̸0 1; for i = 1, IX = 12 ̸ 0̸0̸0̸0̸0̸0̸0̸0̸0̸0̸01 1.

So:

F ′
̸0 = TAGTATATCGACTAGTACAGCGTAGCATCTCGCAGCGAGATACGCTGCTA

CGCAGCATGCTGTGAGTATCGATGACGAGTGACTCTGTACAGTACGTACG

AT ACGTACGTACGT C (length 1̸0̸0 + 15 = 115)

F ′
1 = ATAGTCGTACGTACGTACGTACGTACGTACGTACTGTACAGAGTCACTCG

TCATCGATACTCACAGCATGCTGCGTAGCAGCGTATCTCGCTGCGAGATG

AT ACGTACGTACGA G (length 115)

2.9: Prepend A|T and append C|G (note that in this example we have only one

random choice, at the end of F ′′
̸0):

F ′′
̸0 = A TAGTATATCGACTAGTACAGCGTAGCATCTCGCAGCGAGATACGCTGCTA

CGCAGCATGCTGTGAGTATCGATGACGAGTGACTCTGTACAGTACGTACG

ATACGTACGTACGTC G (length 1 + 115 + 1 = 117)

F ′′
1 = T ATAGTCGTACGTACGTACGTACGTACGTACGTACTGTACAGAGTCACTCG

TCATCGATACTCACAGCATGCTGCGTAGCAGCGTATCTCGCTGCGAGATG

ATACGTACGTACGAG C (length 117)

5

SUPPLEMENTARY INFORMATION

6 | W W W. N A T U R E . C O M / N A T U R E

RESEARCH

3 Decoding

Decoding is simply the reverse of encoding, starting with sequenced DNA fragments

F ′′
i of length 117 nt. Reverse complementation during the DNA sequencing procedure

(e.g. during PCR reactions) can be identified for subsequent reversal by observing

whether fragments start with A|T and end with C|G, or start G|C and end T|A.

With these two ‘orientation’ nt removed, the remaining 115 nt of each segment

can be split into the first 1̸0̸0 ‘message’ nt and the remaining 15 ‘indexing’ nt. The

indexing nt can be decoded to determine the file identifier ID and the position

index i3 and hence i, and errors may be detected by testing the parity trit P .

Position indexing information permits the reconstruction of the DNA-encoded

file, which can then be converted to base-3 using the reverse of the encoding table

in step (1.4) above and then to the original bytes using the given Huffman code.

Precise details of the decoding procedure are left as an exercise for the reader.

Errors introduced during DNA synthesis, storage or sequencing could lead to

various artefacts, particularly nt insertion, deletion or substitution. Recovery

of information from fragments with such errors may be possible (details left as

exercise)—we have not found this to be necessary due to the large numbers of

perfectly-sequenced fragments available via high-throughput sequencing.

6

