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I. RIGIDITY FOR THE CHSH GAME

Let us sketch the proof of the single-game CHSH
rigidity theorem for the case that the devices’ Hilbert
spaces HA and HB are finite dimensional, and ε = 0, i.e.,
the devices achieve the maximum correlation allowed by
Tsirelson’s inequality. Hilbert space completeness allows
for truncating an infinite-dimensional space to finitely
many dimensions, at an arbitrarily small cost.

A general strategy for the devices consists of measur-
ing some shared state in HA ⊗ HB. Since the success
probability is extremal, i.e., ε = 0, we may assume that
the state is extremal, i.e., is pure. Each device measures
its system using a reflection that depends on Eve’s ques-
tion, and returns the sign of the observed eigenvalue ±1.
The shared state |ψ〉 and Alice and Bob’s four reflections
RA

0 , RA
1 , RB

0 and RB
1 determine the strategy.

Jordan’s Lemma35 states that any two reflections act-
ing on a finite-dimensional space can be simultaneously
block-diagonalized into 1 × 1 and 2 × 2 blocks. (The
same statement is false for infinite-dimensional spaces.)
Apply the lemma to RA

0 and RA
1 , to obtain

RA
a =

⊕
i

RA
a (i) , (1)

where i labels the block index, and each RA
a (i) is a 1× 1

or 2×2 reflection. By adding placeholder dimensions, we
may assume without loss of generality that each block
is 2 × 2. Eq. (1), which can equivalently be rewritten
RA

a =
∑

i RA
a (i)⊗|i〉〈i|, gives a basis in which HA = C2⊗

H′
A, where H′

A is the Hilbert space with orthonormal
basis {|i〉}. Thus Jordan’s Lemma gives (an extension
of) the a priori formless space HA a tensor-product
structure. It locates within HA a qubit C2. However,
Alice’s operators need not act locally on this qubit; a
controlled rotation is still needed to align her operators.
After this rotation, we will show that Alice’s strategy is
close to the ideal CHSH game strategy that measures
this qubit using the operators given in Fig. 1 in the main
text.

Since the measurement of the block index commutes
with both RA

a , we may assume that Alice measures the
block index first. Thus we reduce to the case that HA =
C2, and, by a symmetrical argument, that HB = C2,
still with ε = 0.

If the RD
α reflections act on C2 and are not equal to ±I,

then we can choose a basis such that RD
0 = σz =

(
1 0
0 −1

)
,

RA
1 =

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
and RB

1 =
(

cos 2θ′ sin 2θ′

sin 2θ′ − cos 2θ′
)

for
certain angles θ, θ′ ∈ [0, π

2 ]. (As this basis depends on

the block index, changing basis amounts to a controlled
qubit rotation.) Letting Ma = 1

2 (RA
0 + (−1)aRA

1 ) ⊗ I −
1√
2
I ⊗RB

a for a ∈ {0, 1}, the success probability satisfies

2
√

2 − 8ε ≤ 8 Pr[AB = X ⊕ Y ] − 4

= 〈ψ|
( ∑

a,b∈{0,1}

(−1)abRA
a ⊗ RB

b

)
|ψ〉

= 2
√

2 −
√

2〈ψ|(M2
0 + M2

1 )|ψ〉 .

For ε = 0, this means that |ψ〉 must lie in the intersection
of the kernels of M0 and M1. The four eigenvalues of
M0 are ± cos θ ± 1√

2
. For the kernel to be nonempty, it

must be that θ = π
4 . A symmetrical argument implies

that θ′ = π
4 . For small ε > 0, |ψ〉 must lie close to small-

eigenvalue subspaces of both M0 and M1, implying that
θ and θ′ are close to π

4 . Thus the measurement operators
are rigidly determined.

For θ = θ′ = π
4 , the kernel of

√
2((HG) ⊗

I)M0((G†H) ⊗ I) = σz ⊗ I − I ⊗ σz is spanned by
the vectors |00〉 and |11〉. The kernel of

√
2((HG) ⊗

I)M1((G†H) ⊗ I) = σx ⊗ I − I ⊗ σx is spanned by the
vectors |+〉 ⊗ |+〉 = 1

2 (|00〉 + |01〉 + |10〉 + |11〉) and
|−〉⊗ |−〉 = 1

2 (|00〉− |01〉− |10〉+ |11〉). For the |01〉 and
|10〉 terms to cancel out, a linear combination of these
vectors must have equal coefficients. The intersection be-
tween the two kernels is therefore spanned by |00〉+ |11〉.
Thus the state |ψ〉 is rigidly determined.

The above argument conveys much of the intuition for
the CHSH rigidity theorem. The case ε > 0 can be han-
dled by maintaining suitable approximations. However,
we have not explained the derivation of the operators
M0 and M1, chosen to satisfy

∑
a,b∈{0,1}(−1)abRA

a ⊗
RB

b = 2
√

2I ⊗ I −
√

2(M2
0 + M2

1 ). In general, for
a game in which Eve draws her questions from the
distribution p(a, b) and accepts if x ⊕ y = V (a, b),
let Θ =

∑
a,b p(a, b)(−1)V (a,b)|a〉〈b| and Θ̂ =

(
0 Θ

Θ† 0

)
.

Let ω∗ be the optimal success probability. By the
Tsirelson semi-definite program,41 the optimal bias is
2ω∗ − 1 = 1

2 maxΓ�0,Γ◦I=I〈Θ̂, Γ〉 = 1
2 min∆=∆◦I�Θ̂ Tr ∆.

Γ is the Gram matrix of the vectors RA
a |ψ〉 and RB

b |ψ〉.
Letting ∆∗ achieve the second optimum, we have
1
2 〈Θ̂,Γ〉 = (2ω∗ − 1) − 1

2 〈∆
∗ − Θ̂,Γ〉. For the CHSH

game, ∆∗ = 1
2
√

2
1, and the matrices M0, M1 correspond

to eigenvectors of ∆∗ − Θ̂.
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II. RIGIDITY FOR SEQUENTIAL
CHSH GAMES

For sequentially repeated CHSH games, our goal is to
locate in HA and HB not one but many qubits, in tensor
product, such that the devices’ actual strategy is close
to the ideal strategy that measures these qubits one at a
time in sequence. In this section, we will introduce the
notation and put together the theorems needed to prove
rigidity for sequential CHSH games.

A. Notation

To make our claims precise, we begin with some nota-
tion for CHSH games played in sequence, one following
the next, with no communication between games.

A strategy S for Alice and Bob to play n sequential
CHSH games consists of the devices’ Hilbert spaces,
initial shared state and the reflections they use to play
each game.

Initial state: Let HA and HB be Alice and Bob’s re-
spective Hilbert spaces, and HC any external space. Let
|ψ〉 ∈ HA⊗HB ⊗HC be the devices’ initial shared state.

Transcripts: Denote questions asked to Alice by
a1, . . . , an, questions asked to Bob by b1, . . . , bn, and pos-
sible answers by x1, . . . , xn and y1, . . . , yn, respectively.
Write hA

j = (a1, x1, . . . , aj , xj), hB
j = (b1, y1, . . . , bj , yj)

and hj = (hA
j , hB

j ), a full transcript for games 1
through j. Write hj,k and hD

j,k for the full or partial
transcripts for games j through k, inclusive.

Reflections: In game j, for questions aj and bj ,
let RA

aj
(hA

j−1) and RB
bj

(hB
j−1) be the reflections specifying

Alice and Bob’s respective strategies for game j, depend-
ing on the previous games’ transcript. Define projec-
tions PA

j (hA
j ) = 1

2 (1+(−1)xj RA
aj

(hA
j−1)) and PB

j (hB
j ) =

1
2 (1 + (−1)yj RB

bj
(hB

j−1)). For D ∈ {A, B} and j ≤ k,
let PD

j,k(hD
k ) = PD

k (hD
k ) · · · PD

j+1(h
D
j+1)P

D
j (hD

j ). Let
PAB

j,k (hk) = PA
j,k(hA

k ) ⊗ PB
j,k(hB

k ).

Super-operators: For j < k and partial transcript hj ,
define super-operators EA|hA

j
k and EB|hB

j
k by

ED|hD
j

k (|hD
j+1,k−1〉〈hD

j+1,k−1| ⊗ ρ)

=
1
2

∑
αk,χk

|hD
j+1,k〉〈hD

j+1,k| ⊗ PD
k (hD

k )ρPD
k (hD

k ) ,

(2)

where hD
k = (hD

k−1, αk, χk). These super-operators
capture the effects of Alice and Bob playing game k,
where games j + 1 to k − 1 of the transcript are
stored in a separate register. For � ≥ k, let ED|hD

j
k,� =

ED|hD
j

� · · · ED|hD
j

k+1 ED|hD
j

k and EAB|hj

k,� = EA|hA
j

k,� ⊗ EB|hB
j

k,� .

Let ρ1 = |ψ〉〈ψ|, ρj(hj−1) =
PAB

1,j−1(hj−1)ρ1P
AB
1,j−1(hj−1)† / Tr(PAB

1,j−1(hj−1)ρ1)
be the state at the beginning of game j con-
ditioned on hj−1, and ρj = EAB

1,j−1(ρ1) =
1

4j−1

∑
hj−1

|hj−1〉〈hj−1| ⊗ PAB
1,j−1(hj−1)ρ1P

AB
1,j−1(hj−1)†.

Compare to Eq. (1) in the main text.

For fixed Hilbert spaces, a strategy S can be identified
with the tuple (ρ1, {EA

j }, {EB
j }). When considering mul-

tiple strategies, we will decorate this notation to indicate
the corresponding strategy, e.g., S̃ = (ρ̃1, {ẼA

j }, {ẼB
j }).

Call a strategy for a single CHSH game ε-structured
if the probability of winning is at least ω∗ − ε/8. In our
theorem, we will assume that most games the devices
play are ε-structured, in the following sense:

Definition II.1 (Structured strategy). A sequential
CHSH game strategy S is (δ, ε)-structured if for every j,
there is at least a 1 − δ probability over transcripts hj−1

that game (j, hj−1) is ε-structured. S is ε-structured if
it is (ε, ε)-structured.

We aim to show that the devices play nearly ideally:

Definition II.2 (Ideal strategy). A strategy S for n
sequential CHSH games is an ideal strategy if there
exist isometries ID : HD ↪→ (C2)⊗n ⊗H′

D and a state
|ψ′〉 ∈ H′

A ⊗H′
B ⊗HC such that for every j and hj−1,

IA ⊗ IB |ψ〉 = |ϕ〉⊗n ⊗ |ψ′〉
RD

α (hD
j−1) = ID†(RD

α )jID ,
(3)

where (RD
α )j denotes the ideal reflection operator RD

α

from Fig. 1 in the main text acting on the jth qubit.

In order to compare strategies, define a notion of
simulation:

Definition II.3 (Strategy simulation). Let S and S̃ be
two strategies for playing n sequential CHSH games. For
ε ≥ 0, we say that strategy S̃ ε-simulates strategy S if
they both use the same Hilbert spaces and for all j,

max
D∈{A,B}

‖ED
1,j(ρ1) − ẼD

1,j(ρ̃1)‖tr ≤ ε . (4)

Say that S̃ weakly ε-simulates S if only the weaker in-
equality ‖EAB

1,j (ρ1) − ẼAB
1,j (ρ̃1)‖tr ≤ 2ε holds.

It is also convenient to allow a basis change by local
unitaries or local isometries:

Definition II.4. A strategy S̃ is an isometric extension
of S if there exist isometries XD : HD ↪→ H̃D such that
|ψ̃〉 = XA ⊗ XB |ψ〉 and XDRD

α (hD
j−1) = R̃D

α (hD
j−1)XD

always. (Thus XDED
j = ẼD

j XD.)
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B. Main rigidity theorem and proof outline

Our main theorem states that a structured strategy
can be closely simulated by an ideal strategy:

Theorem II.5 (Rigidity theorem for sequential CHSH
games). There exists a constant κ such that for any
ε-structured strategy S for n sequential CHSH games,
there exists an ideal strategy Ŝ that κnκε1/κ-simulates
an isometric extension of S.

The first step of the proof of Theorem II.5 is to replace
the structured strategy S with one in which the devices
play every game using the ideal CHSH game operators
on some qubit, up to a local change in basis. See Fig. 1.

Definition II.6 (Single-qubit ideal strategy). A strat-
egy S is a single-qubit ideal strategy if there exist uni-
taries UD

j (hD
j−1) : HD

∼=→ C2 ⊗H′
D such that always

RD
α (hD

j−1) = UD
j (hD

j−1)
†(RD

α ⊗ 1)UD
j (hD

j−1) . (5)

That is, each device’s reflections for game (j, hD
j−1) are

equivalent up to local unitaries to the ideal CHSH game
reflections, although the qubits used need not be in tensor
product.

Theorem II.7. There exists a constant κ such that if S
is an ε-structured strategy for n sequential CHSH games,
then there is a single-qubit ideal strategy S̃ that weakly
κnκε1/κ-simulates an isometric extension of S.

Proof sketch. As explained in the main text, let
ẼD

j be the super-operator that replaces the de-
vice’s measurement operators with the ideal operators
promised by the CHSH rigidity theorem. Then S̃ =
(ρ1, {ẼA

j }, {ẼB
j }). If Pr[game j is ε-structured] ≥ 1 − δ,

then ‖EAB
j (ρj) − ẼAB

j (ρj)‖tr ≤ 2δ + O(
√

ε). (This ex-
pression combines bounds on the probability of the bad
event and the O(

√
ε) error from the good event.)

To show our goal, that EAB
1,n (ρ1) ≈ ẼAB

1,n (ρ1) in trace
distance, use a hybrid argument that works backwards
from game n to game 1 fixing each game’s measurement
operators one at a time. The error introduced from fixing
a game j, by moving from EAB

j (ρj) to ẼAB
j (ρj), does not

increase in later games because applying a super-operator
cannot increase the trace distance. Mathematically, this
hybrid argument is simply a triangle inequality using
the expansion

EAB
1,n (ρ1)−ẼAB

1,n (ρ1) =
∑
j∈[n]

ẼAB
j+1,n

(
EAB

j (ρj)−ẼAB
j (ρj)

)
.

Next, we find a nearby strategy in which the qubits
for successive games are in tensor product.

Definition II.8 (Multi-qubit ideal strategy). A strat-
egy S is a multi-qubit ideal strategy if there is a unitary
isomorphism YD : HD

∼=→ (C2)⊗n ⊗H′
D under which for

unitaries MD
j (hD

j−1) ∈ L((C2)⊗(n−j+1) ⊗H′
D) such that

RD
α (hD

j−1) = YD†MD
1

† . . .
(
1⊗(j−1)
C2 ⊗ MD

j (hD
j−1)

†)(RD
α )j

(
1⊗(j−1)
C2 ⊗ MD

j (hD
j−1)

)

. . . MD
1 YD .

(6)

That is, S is a single-qubit ideal strategy in which the
qubits used in each game must lie in tensor product with
the qubits from previous games.

Theorem II.9. There exists a constant κ such that
if S̃ is an ε-structured single-qubit ideal strategy for n
sequential CHSH games, then there is a multi-qubit ideal
strategy S̄ that weakly κnκε1/κ-simulates an isometric
extension of S̃.

Proof sketch. The tensor-product structure is con-
structed beginning with a trivial transformation on S̃:
to each device, add n ancilla qubits each in state |0〉.
Next, after a qubit has been measured, say as |αj〉 in
game j, swap it with the jth ancilla qubit, then rotate
this fresh qubit from |0〉 to |αj〉 and continue playing
games j+1, . . . , n. This defines a unitary change of basis
that places the outcomes for games 1 to j in the first j
ancilla qubits, and leaves the state in the original Hilbert
space unchanged. Since qubits are set aside after being
measured, the qubits for later games are automatically
in tensor product with those for earlier games; the re-
sulting strategy S̄ is multi-qubit ideal. At the end of the
n games, swap back the ancilla qubits and undo their
rotations, using the transcript.

The key to showing that S̄ is close to S̃ is the fact that
operations on one half of an EPR state can equivalently
be performed on the other half, since for any 2 × 2
matrix M , (M ⊗ I)(|00〉 + |11〉) = (I ⊗ MT )(|00〉 +
|11〉). This means that the outcome of an ε-structured
CHSH game would be nearly unchanged if Bob were
hypothetically to perform Alice’s measurement before
his own. By moving Alice’s measurement operators for
games j + 1 to n over to Bob’s side, we see that they
cannot significantly affect the qubit |αj〉 from game j on
her side. Therefore, undoing the original change of basis
restores the ancilla qubits nearly to their initial state
|0n〉, and S̃ ≈ S̄.

Formally, define a unitary super-operator Vj that ro-
tates the jth ancilla qubit to |αj〉, depending on Alice’s
local transcript hA

j . Define a unitary super-operator Tj

to apply Vj and swap the jth ancilla qubit with the
qubit Alice uses in game j (depending on hA

j−1). Alice’s
multi-qubit ideal strategy is given by

ĒA
j = T −1

1,j−1(1C2n ⊗ ẼA
j )T1,j−1 . (7)
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a   General strategy

qubits for game 3
(depending on h   )

b   Single-qubit ideal strategy

qubit for 
game 1

qubits for 
game 2

2
D

qubit for 
game 1

c   Multi-qubit ideal strategy
qubits for 

games (2, h  )1D

qubits for 
games (3, h  )2D

d   Ideal strategy

qubits for…

game 2 game 3game 1

FIG. 1: Proof outline for Theorem II.5. a, Initially, each device D ∈ {A, B} can play arbitrarily, measuring in game j
one of two reflections RD

α (hD
j−1), α ∈ {0, 1}, that depend on the local transcript hD

j−1 for the previous games. No structure
is given for the Hilbert space HD. b, We first show that D’s strategy is close to a “single-qubit ideal strategy,” in which
for every game it measures some qubit using the ideal CHSH game strategy, but the qubit locations can be arbitrary. Here,
the qubits are illustrated schematically as balls, and the overlaps indicate that they need not be in tensor product. c, We
then construct a nearby “multi-qubit ideal strategy,” in which the qubits used in each game must lie in tensor product with
the qubits from previous games, but can overlap qubits used along other transcripts. d, Finally, we argue that the qubit
locations cannot depend significantly on the transcript, and therefore that the original strategy is well-approximated by an
ideal strategy that measures a fixed set of n qubits in sequence. (Note that these visualizations, representing qubits as balls,
are inherently imprecise. A qubit’s location in a Hilbert space is given not by a ball, but by the two anti-commuting reflection
operators σx and σz.)

We aim to show that the strategy given by ρ1, {ĒA
j } and

{ẼB
j } is close to S̃ up to the fixed isometry that prepends

|0n〉〈0n| to the state, i.e., that |0n〉〈0n| ⊗ ẼAB
1,n (ρ1) ≈

ĒA
1,n

(
|0n〉〈0n| ⊗ ẼB

1,n(ρ1)
)
. Define a super-operator F̃AB

j ,
in which Alice’s measurements are made on Bob’s Hilbert
space HB , on the qubit determined by Bob’s local tran-
script hB

j−1. Since most games are ε-structured, by the
CHSH rigidity theorem, F̃AB

j+1,k(ρ̃j+1) ≈ ẼAB
j+1,k(ρ̃j+1) =

ρ̃k+1 for any j ≤ k. Since F̃AB
j+1,k acts on HB, it does

not affect Alice’s qubit |αj〉 from game j at all, and so
this qubit must stay near |αj〉 in ρ̃k+1 as well, i.e., the
trace of the reduced density matrix against the projec-
tion |αj〉〈αj | stays close to one. As this holds for every j,
T −1

1,n indeed returns the ancillas almost to their initial
state |0n〉.

In more detail, let Xj be the operator that projects
onto Alice’s jth ancilla qubit and the qubit she uses in the
jth game being |0〉⊗|αj〉. By definition, Tr(Xj ρ̃j+1) = 1.
By the Gentle Measurement Lemma,42,43 it suffices to
show that Tr(Xj ρ̃k+1) = TrXj ẼAB

j+1,k(ρ̃j+1) ≈ 1. This
is not obvious; since the operators for games j + 1 to k
do not act in tensor product, they can disturb the qubit
measured in game j. However, since a super-operator
on HB cannot affect the expectation of an operator
supported on HA, we find

Tr(Xj ρ̃k+1) = Tr Xj ẼAB
j+1,k(ρ̃j+1)

≈ TrXjF̃AB
j+1,k(ρ̃j+1)

= Tr(Xj ρ̃j+1)
= 1 .

A symmetrical argument adjusts Bob’s super-

operators {ẼB
j } to {ĒB

j }, implying that S̄ weakly simu-
lates S̃.

The last major step in the proof of Theorem II.5 is
to argue that the qubit locations cannot depend signifi-
cantly on the local transcripts, and therefore simulate a
multi-qubit ideal strategy with an ideal strategy.

Theorem II.10. There exists a constant κ such that
if S̄ is an ε-structured multi-qubit ideal strategy for n
sequential CHSH games, then there is an ideal strategy
that weakly κnκε1/κ-simulates S̄.

Proof sketch. Fix a transcript ĥn, chosen at random from
the distribution of transcripts for S̄. Define a strategy
Ŝ to use the same initial state ρ̄1 as S̄ and the qubits
specified by ĥn in S̄, i.e., R̂D

α (hD
j−1) = R̂D

α (ĥD
j−1) inde-

pendent of hD
j−1. Thus, as required in Definition II.2,

R̂D
α (hD

j−1) = ÎD†(RD
α )j ÎD for

ÎD =
(
1(C2)⊗(n−1) ⊗ M̄D

n (hD
n−1)

)
. . . M̄D

1 ȲD .

We argue that Ŝ closely approximates S̄, provided
that ĥn satisfies: for every j, conditioned on the partial
transcript ĥj−1, (a) game j is ε-structured, and (b) there
is a high probability that every subsequent game is ε-
structured. By Markov inequalities, most transcripts
satisfy these conditions.

We connect S̄ to Ŝ by an argument that one game at a
time switches play to locate qubits according to ĥn. The
intermediate steps relate strategies in which the devices
locate their qubits using a hybrid (ĥj , hj+1,n) of ĥn and
the actual transcript hn.
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Consider a partial transcript hj that differs from ĥj

only in the jth game, say on Alice’s side. By (a) and the
CHSH rigidity theorem, Alice’s jth qubit is collapsed
and nearly in tensor product with the rest of the state.
Therefore, there exists a unitary V A

j acting on this qubit
such that

ρ̄j+1(hj) ≈ V A
j ρ̄j+1(ĥj)V A

j
† , (8)

up to error O(
√

ε). Since applying a super-operator
cannot increase trace distance and on Bob’s side hB

j =
ĥB

j , therefore

F̄AB|hB
j

j+1,n

(
ρ̄j+1(hj)

)
≈ V A

j F̄AB|ĥB
j

j+1,n

(
ρ̄j+1(ĥj)

)
V A

j
† .

Here, F̄AB|hB
j

j+1,n is the same super-operator used in the
multi-qubit ideal strategy simulation step—that plays
Alice’s games on Bob’s qubits—except conditioned on
the local transcript hB

j . By condition (b), these super-
operators can be pulled back to Alice’s side, to give

ĒAB|hj

j+1,n

(
ρ̄j+1(hj)

)
≈ V A

j ĒAB|ĥj

j+1,n

(
ρ̄j+1(ĥj)

)
V A

j
† .

Note that this approximation does not follow imme-
diately from Eq. (8), because Alice’s super-operators
conditioned on hA

j can be very different from her super-
operators conditioned on ĥA

j .
By fixing the coordinates one at a time in this way,

we find that for a typical transcript hn, ρ̄n+1(hn) ≈
V AB

1,n ρ̄n+1(ĥn)V AB
1,n

†, and we conclude that ĒAB
1,n (ρ1) ≈

ÊAB
1,n (ρ1).
Since ÊAB

1,n measures qubits in tensor product with each
other, by using the CHSH rigidity theorem one last time,
it is not difficult to show that ÊAB

1,n (ρ1) ≈ ÊAB
1,n (ρ̂1), where

ρ̂1 has n EPR pairs in the qubit positions determined
by ĥn. Thus S̄ is weakly simulated by the ideal strategy
given by (ρ̂1, {ÊA

j }, {ÊA
j }).

The last three theorems chain together via:

Lemma II.11. Let S be a (δ, ε)-structured strategy for
n sequential CHSH games. If S̃ is a strategy that weakly
η-simulates S, then S̃ is (δ + 2

√
η, ε + 16

√
η)-structured.

This lemma follows immediately from the definitions.
The conclusion from these theorems is that the de-

vices’ joint strategy is close to ideal: EAB
1,n (ρ1) ≈ ÊAB

1,n (ρ̂1).
This weak simulation statement is not strong enough for
our applications, in which sometimes Eve plays CHSH
games with only one of the two devices. To prove Theo-
rem II.5, we need to show a simulation statement, i.e.,
that the devices’ strategies are separately close to ideal:
EA
1,n(ρ1) ≈ ÊA

1,n(ρ̂1) and EB
1,n(ρ1) ≈ ÊB

1,n(ρ̂1). These es-
timates cannot be obtained directly because our main
assumption, that every game j is usually ε-structured,

is only of use if both devices have played games 1
through j − 1—it gives information about ED

j applied to
EAB
1,j−1(ρ1), not about ED

j applied to ED
1,j−1(ρ1). The key

idea to obtain separate estimates is that applying both
devices’ super-operators is almost equivalent to applying
Alice’s super-operator, guessing Bob’s measurement out-
come from the ideal conditional distribution, and based
on the guess applying a controlled unitary correction to
his qubit. Since Alice’s super-operator collapses both
qubits of the EPR state, it is not actually necessary
to measure Bob’s qubit. Defining GB

j to be this guess-
and-correct super-operator, two hybrid arguments give
EAB
1,n (ρ1) ≈ GB

1,nEA
1,n(ρ1) and ẼA

1,nEB
1,n(ρ1) ≈ GB

1,nẼA
1,n(ρ1).

Thus,

GB
1,nEA

1,n(ρ1) ≈ GB
1,nẼA

1,n(ρ1) .

The same super-operator GB
1,n appears on both the left-

and right-hand sides above. In general, applying a super-
operator can reduce the trace distance. In this case,
however, it does not; the correction part of GB

1,n is unitary,
and the guessing part is a stochastic map acting on a copy
of Alice’s classical transcript register. Therefore, indeed
EA
1,n(ρ1) ≈ ẼA

1,n(ρ1). In general, this same argument
implies:

Lemma II.12. There exists a contant κ such that if
S = (ρ1, {EA

j }, {EB
j }) is an ε-structured strategy that is

weakly δ-simulated by S̃ = (ρ1, {ẼA
j }, {EB

j }), a strategy
differing only in Alice’s reflection operators, then S̃ also
κnκ(δ + ε)1/κ-simulates S.

This lemma suffices to strengthen Theorems II.7
and II.9 from weak simulation to simulation statements.
The argument to strengthen Theorem II.10, and there-
fore conclude Theorem II.5, is similar, but more involved.

C. Rigidity theorem based on observed statistics

For ζ > 0, call a strategy for n sequential CHSH
games ζ-ideal if an isometric extension of the strategy
is ζ-simulated by an ideal strategy. Theorem II.5 states
that any ε-structured strategy is κnκε1/κ-ideal. Using a
simple martingale argument, the structure assumption
can be justified based on observed statistics:

Theorem II.13. Let Alice and Bob play in sequence N
sets each of n sequential CHSH games. Let W ≤ Nn
be the total number of games that Alice and Bob win.
Fix ε > 0, and let G ≤ N be the number of sets of
games for which the provers’ joint strategy for that set,
conditioned on the previous games’ outcomes, is κnκε1/κ-
ideal, where κ is the constant from Theorem II.5. Let
η > 0. Then for any δ such that t = 1

8ε2ηN − δNn ≥ 0,

Pr
[
W ≥ (ω∗ − δ)Nn, G < (1 − η)N

]
≤ e−

t2
2Nn . (9)
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Informally, this theorem says that if the devices do
not use a nearly ideal strategy for most subsequences of
games, then they are unlikely to win too many games.
It follows that if the devices have a high probability of
winning many games—close to ω∗Nn games—then the
strategy at the beginning of a random subsequence of n
games is very likely to be κnκε1/κ-ideal.

III. VERIFIED QUANTUM DYNAMICS
PROOF SKETCHES

A. XZ-determined states

In the CHSH game, each device has two measurement
settings, that in the ideal strategy may be identified with
Pauli σx and σz operators. For carrying out tomography,
however, it is generally necessary to be able to measure in
the σy basis as well. It is possible to extend the CHSH
game to one in which the ideal strategy also uses σy

operators on a shared EPR state. However, this extended
game will not satisfy the rigidity property. The problem
is that a device that consistently measures using −σy

will give indistinguishable statistics from one that uses
+σy. (Switching the sign of σy is equivalent to taking
an entry-wise complex conjugate in the computational
basis.) It is impossible to fix the sign of the σy operator.

We therefore instead argue that for certain states, re-
liable tomography can be accomplished without needing
to measure in the σy basis. This observation is due to
McKague38 and was suggested earlier by Magniez et
al.27 McKague shows that for |ϕ〉 = 1√

2
(|00〉 + |11〉), an

EPR pair, the states (I ⊗ U)|ϕ〉, for any single-qubit
real unitary U , and CNOT24|ϕ〉12 ⊗ |ϕ〉34, as well as
finite tensor products of these states, are exactly deter-
mined by their traces against tensor products of I, σx

and σz operators. That is, they are determined by the
expectations of observables that can be estimated using
measurements in the σx and σz bases. We call such
states “XZ-determined.” For our applications, we will
need to show a larger class of states to be XZ-determined.
However, characterizing the full set of XZ-determined
states remains an open problem.

Definition III.1. For a Hilbert space H, a set of op-
erators S ⊆ L(H) and d > 0, a state τ ∈ L(H) is
determined by S with exponent d if there exists c > 0
such that for all ε ≥ 0 and any state ρ ∈ L(H),

max
P∈S

|TrP (ρ − τ)| ≤ ε =⇒ ‖ρ − τ‖tr ≤ c εd . (10)

For H = (C2)⊗n, a state τ is XZ-determined if it is
determined with some exponent d > 0 by the Pauli oper-
ators {I, σx, σz}⊗n.

Robustness is important for applications, but previous
work has considered only ε = 0. By �Lojasiewicz’s inequal-

ity44 (Prop. 2.3.11) in algebraic geometry, robustness
follows from the ε = 0 case:

Lemma III.2. For a finite-dimensional Hilbert space H,
a state τ ∈ L(H) is determined by a finite set S ⊂ L(H)
if and only if for any state ρ ∈ L(H), the implication of
Eq. (10) holds at ε = 0.

Recall that a stabilizer state is an n-qubit pure
state |ψ〉 for which there exists a set of 2n distinct
and pairwise commuting operators S ⊂ {±P : P ∈
{I, σx, σy, σz}⊗n}, the stabilizer group, such that P |ψ〉 =
|ψ〉 for all P ∈ S.45 Any set of n operators that generate
the stabilizer group S are called stabilizer generators for
|ψ〉. We prove:

Theorem III.3. If |ψ〉 ∈ (C2)⊗n is a stabilizer state
that has a set of stabilizer generators in {I, σx, σz}⊗n,
and if U is the tensor product of any n single-qubit real
unitaries, then U |ψ〉 is XZ-determined.

In particular, the resource states needed in our ver-
ified quantum dynamics protocol, |0〉 ⊗ (I ⊗ H)|ϕ〉 ⊗
(I ⊗G)|ϕ〉⊗CNOT2,4(|ϕ〉⊗ |ϕ〉), are XZ-determined, as
are the same states with G applied transversally. This
latter consideration is important because Alice’s ideal
measurement bases in the CHSH game are rotated by
π/4 from σx and σz.

The proof of Theorem III.3 begins by showing easily
that |0〉 is determined by {σz}. Then apply three clo-
sure properties. First, closure under tensor product for
pure states implies that |0〉⊗n is determined by the n
operators σz ⊗ I⊗(n−1), . . . , I⊗(n−1) ⊗ σz. Second, ob-
serve by manipulating implication (10) that if τ is a
state determined by S, then for any unitary U , UτU† is
determined with the same exponent by {UPU† : P ∈ S}.
Since an arbitrary stabilizer state can be generated by
applying Clifford operators to |0〉⊗n, this implies that
a stabilizer state is determined by any of its sets of
stabilizer generators. Furthermore, if τ is determined
by S = {P1, . . . , Ps}, then for any invertible s × s ma-
trix V , τ is determined with the same exponent by
{
∑s

j=1 VijPj : i = 1, . . . , s}. This implies, e.g., that any
XZ-determined state is also determined by the operators
{I, 1√

2
(σz ± σx)}⊗n, since the {I, σx, σz}⊗n coefficients

are functions of the {I, 1√
2
(σz ± σx)}⊗n coefficients.

B. State tomography

The state tomography protocol begins with (K − 1)m
CHSH games, where K is chosen randomly. The multi-
game rigidity theorem implies that at the beginning of
the Kth block of m, with high probability Alice and
Bob share a state that is close to m shared EPR states,
possibly in tensor product with an additional state, and
that their separate measurement strategies for the next
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m games are close to the ideal strategy that uses one EPR
state at a time. For the analysis of the state tomography
protocol, we may therefore assume that Alice’s strategy
is exactly ideal and restrict consideration to these m
EPR states.

Bob, on the other hand, does not play more CHSH
games, but instead is given by Eve a random permu-
tation of the m indices, and is asked to permute his
qubits and prepare many copies of a particular resource
state. (In the main text, this state is specified as
|ψ〉 = |0〉⊗(I⊗H)|ϕ〉⊗(I⊗G)|ϕ〉⊗CNOT2,4(|ϕ〉⊗|ϕ〉).
The |0〉 portion is for preparing the initial states in a
computation and implementing the final measurements,
and the other subsystems are for teleporting into each
of the gates in a universal gate set, e.g., (I ⊗ G)|ϕ〉 for
teleporting into G. However, after teleporting into G,
an H correction may or may not be required. To main-
tain the blindness property of the protocol, i.e., to avoid
leaking any information about the computation to the
separate devices, it is of technical use to have available
the resource state |ψ〉 ⊗ |ϕ〉, where the extra EPR state
is used for teleporting into the identity gate when an H
correction is not needed.)

Note that Bob’s reduced density matrix is maximally
mixed, so the probability that he can measure the correct
11-qubit resource state is only 1/211. However, since
the states

{
(P ⊗ I)|ϕ〉 : P ∈ {I, σx, σy, σz}

}
form an

orthonormal basis, so too do the states

P (0)|0〉⊗(P (1)⊗I)|ϕ〉⊗(P (2)⊗H)|ϕ〉⊗(P (3)⊗G)|ϕ〉

⊗ (P (4)
1 ⊗ P

(5)
3 ⊗ CNOT2,4)(|ϕ〉12 ⊗ |ϕ〉34) , (11)

where P (0) ∈ {I, σx} and the other P (j) vary over
{I, σx, σy, σz}. Any of the states in Eq. (11) are equally
useful resources for computation by teleportation, as Eve
can adjust for the P (j) operators in her classical Pauli
frame.46

Therefore define an ideal state tomography protocol
as one in which Alice and Bob’s initial state consists of
m shared EPR states, possibly in tensor product with an
additional state; Alice plays honestly m CHSH games,
directed by Eve; and Eve sends Bob a random m-item
permutation and requests that he return the results
of measuring consecutive 11-qubit blocks of permuted
qubits in the basis of Eq. (11). Eve rejects if the tomog-
raphy statistics returned by Alice are inconsistent with
Bob’s reported outcomes. More precisely, she rejects if
the fraction of times Bob reports any particular state
differs from 1/211 by more than

√
(log m)/m, i.e., about√

log m standard deviations, or if for any state any of
its {I, X, Z}⊗11 Pauli coefficients differ from the corre-
sponding observed estimates by more than

√
(log m)/m.

We show:

Theorem III.4. In an ideal state tomography protocol,
if Alice plays honestly, then:

Completeness: If Bob plays honestly, then Eve accepts
with high probability.

Soundness: If Eve accepts with high probability, then
there is a high probability that, after Bob and before
Alice’s play, for most of the consecutive 11-qubit
subsystems, Alice’s reduced state on the subsystem
is close to the state in Eq. (11) that Bob reported
to Eve.

In these statements, “with high probability” means
with probability inverse polynomially close to one, i.e., at
least 1−1/mc, where the exact exponents are adjustable.

The completeness property of the protocol is a trivial
application of Hoeffding’s inequality; the probability
of straying by more than

√
log m standard deviations

is at most exp(−Ω(log m)) = m−Ω(1). The soundness
property is also mostly a straightforward tomography
argument, using that the states in Eq. (11) are all XZ-
determined. The main technical complication is that the
states of Alice’s 11-qubit blocks need not be in tensor
product. Therefore, her measurement results on different
blocks need not be independent. They can be controlled
with a suitable martingale.

First fix a permutation σ ∈ Sm and a string x ∈
({0, 1}11)m/11 such that, conditioned on Eve sending
Bob σ and receiving back x, Eve accepts with high prob-
ability. The remaining randomness consists of Alice’s
measurement bases and results. Since Alice’s measure-
ments commute, we may assume that she measures her
qubits in the permuted order, without changing the
measurement statistics.

For j = 1, . . . ,m/11, let ρj be Alice’s initial reduced
state on her jth block of 11 qubits. Our goal is to control
most of the states ρj . Let σj be the state of the same
qubits just before she begins to measure them. The
state σj is a random variable, but is a deterministic
function of the transcript hA

11(j−1) of the earlier CHSH
games with Alice. Conditioned on hA

11(j−1), Alice’s mea-
surement results for games 11(j − 1) + 1, . . . , 11j are
distributed according to the Pauli coordinates of σj .

For each b ∈ {0, 1}11, let πb be the corresponding
state of Eq. (11), and let τb be the average of those
σj for which Bob reported xj = b. Using a martingale
argument, we can establish that with high probability,
for all b, πb and τb have similar {I, σx, σz}⊗11 Pauli
coordinates. Since πb is XZ-determined, this implies
that all Pauli coordinates of πb and τb are close. Since πb

is a pure state, i.e., an extremal quantum state, a Markov
inequality implies that for most j with xj = b, πb and σj

have close Pauli coordinates. Finally, average back over
the transcripts to get that for most j with xj = b, πb is
close to ρj =

∑
hA
11(j−1)

Pr[hA
11(j−1)]σj(hA

11(j−1)). This is
the claim.

Theorem III.4 says that Bob’s measurement usually
prepares the correct state on Alice’s side—but it says
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nothing about the distribution of his measurement re-
sults. Since Bob’s half of the shared EPR states is
maximally mixed, his measurement outcomes are in fact
distributed nearly uniformly on most subsystems. Thus
the effect of Bob’s actual super-operator is close to that
of the ideal super-operator, if we trace out everything
except for a random subset of subsystems on Alice’s side.

C. Process tomography

Computation by teleportation uses adaptively cho-
sen two-qubit Bell measurements on prepared resource
states. The state tomography protocol gives Eve a
way of ensuring that Alice’s initial m-qubit state con-
sists of the desired resource states. The Bell states{
(P ⊗ I)|ϕ〉 : P ∈ {I, σx, σy, σz}

}
, eigenstates of the

Bell measurement, are themselves XZ-determined states.
A symmetrical protocol, with the roles of Alice and Bob
switched, could thus be used to prepare these states
in Bob’s initial m-qubit state, before his play begins.
However, for verified quantum computation we need a
stronger conclusion, that after Bob’s measurements col-
lapse Alice’s initial state into copies of the resource states
of Eq. (11), Alice’s operations indeed implement Bell
measurements. This is a stronger conclusion because, as
explained earlier, it is possible that dishonest operations
on Alice’s side—far from Bell measurements—could still
collapse Bob’s initial state to many copies of Bell states.

The process tomography protocol, to ensure Alice’s
honesty, begins in the same way as state tomography,
with (K −1)m CHSH games refereed between both play-
ers. The multi-game rigidity theorem again allows us to
assume that the devices then share m EPR states and
would play the Kth block of games honestly, according
to the ideal CHSH game strategy. However, Eve only
continues playing CHSH games with Bob. To Alice, Eve
repeatedly sends random pairs of indices, drawn uni-
formly without replacement from {1, . . . ,m}, requesting
the results of Bell measurements on the specified qubits.
Eve does not try to draw any statistical conclusions
from the reported results, but instead rejects if Alice’s
reported result for any pair of qubits is inconsistent with
Bob’s reported outcomes. For example, if Alice reports
measuring the Bell state |ϕ〉 and Bob is asked to mea-
sure the same two qubits both in the σz basis, then the
parity of Bob’s measurement results should be 0. This is
because σz ⊗σz is a stabilizer for |ϕ〉: (σz ⊗σz)|ϕ〉 = |ϕ〉.
The four Bell states are all stabilized by ±σz ⊗ σz and
±σx ⊗ σx, with four different sign choices. If Bob is
asked to measure one of the two qubits in the σx basis
and one in the σz basis, then his results for that pair do
not give a check on Alice.

From Alice’s perspective, the interaction is indistin-
guishable from the questions she would be asked in an

actual computation; she is entirely unaware that Bob
is playing CHSH games instead of preparing resource
states.

We show:

Theorem III.5. In the process tomography protocol, if
after the first (K−1)m CHSH games, Bob plays honestly
on his halves of m shared EPR states, then:

Completeness: If Alice plays honestly, Eve accepts
with probability one.

Soundness: If Eve accepts with high probability, then
the result of Alice’s super-operator applied to the
initial state is close to that of applying the ideal Bell
measurements super-operator to the initial state.

Again, the completeness statement is trivial. The
soundness statement is not difficult. Fix a permutation
of the qubits for which Eve accepts with high probability.
We prove soundness for the protocol in which Alice is
given the full permutation at the beginning instead of
only two indices at a time; this can only give her more
opportunities to cheat.

Let ρ̂1 be the initial state, consisting of m EPR states.
Without loss of generality, Alice’s strategy consists of
measuring a complete set of 2m orthogonal projections,
and returning the outcome. For j = 1, . . . ,m/2, let GA

j

be Alice’s super-operator that implements the jth alleged
Bell measurement, by the appropriate marginal projec-
tive measurement. For j ≤ k, let GA

j,k = GA
k · · · GA

j+1GA
j .

Alice’s full strategy is implemented by GA
1,m/2. Let ĜA

j

be the ideal super-operator that actually carries out a
Bell measurement on the jth specified pair of qubits,
and ĜA

j,k = ĜA
k · · · ĜA

j . Our goal is to show that in trace
distance

GA
1,m/2(ρ̂1) ≈ ĜA

1,m/2(ρ̂1) . (12)

Since Eve accepts all the tests with high probability, it
must be that for every j, Eve’s jth Bell measurement test
passes with high probability. By the Gentle Measurement
Lemma, this implies that GA

j (ρ̂1) ≈ ĜA
j (ρ̂1). For j = 1,

this gives the first step:

GA
1,m/2(ρ̂1) ≈ GA

2,m/2Ĝ
A
1 (ρ̂1) .

We cannot immediately apply GA
2 (ρ̂1) ≈ ĜA

2 (ρ̂1) to con-
tinue, because although the GA

j super-operators commute
with each other, GA

2 might not commute with ĜA
1 .

An easy trick gets around the problem. Define F̂B
j to

implement a Bell measurement on the jth specified pair
of qubits on Bob’s side. Let F̂B

j,k = F̂B
k · · · F̂B

j . Then
ĜA

j (ρ̂1) = F̂B
j (ρ̂1). Super-operators acting on Bob’s

Hilbert space automatically commute with those acting
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on Alice’s space, so we can continue the above derivation:

GA
1,m/2(ρ̂1) ≈ GA

2,m/2Ĝ
A
1 (ρ̂1) = F̂B

1 GA
2,m/2(ρ̂1)

≈ F̂B
1 GA

3,m/2Ĝ
A
2 (ρ̂1) = F̂B

1,2GA
3,m/2(ρ̂1) ≈ · · ·

≈ F̂B
1,m/2(ρ̂1) = ĜA

1,m/2(ρ̂1) .

The total approximation error is linear in m.

D. QMIP = MIP∗

The way in which protocols for CHSH games, state
and process tomography, and computation are combined
to give verified quantum dynamics is sketched in the
main text. We also describe there the main remaining
technical obstacle, the issue of Eve choosing her questions
adaptively. Formally, let ρ be the initial state, and let B
be the super-operator describing Eve’s interactions with
Bob in state tomography. Roughly, state tomography
implies that the states Bob prepares on Alice’s side are
correct up to a small error in trace distance, or

TrB B(ρ) ≈ TrB B̂(ρ̂) , (13)

where B̂ is the ideal super-operator and ρ̂ is an ideal
initial state consisting of perfect EPR states. Similarly,
let A be the super-operator describing Eve’s interactions
with Alice in a process tomography protocol on Alice’s
operations; we have

A(ρ) ≈ Â(ρ) . (14)

Computation by teleportation can be implemented ei-
ther by choosing Bob’s state preparation questions non-
adaptively and Alice’s process questions adaptively, or
vice versa. We show that these are exactly equivalent
regardless of the devices’ strategies, i.e.,

AadB = BadA , (15)

where Aad and Bad are the same as A and B, respectively,
except with Eve choosing her questions adaptively based
on the previous messages. Combining these steps, we
therefore obtain

TrB BadA(ρ) ≈ TrB BadÂ(ρ)

= Âad TrB B(ρ)

≈ Âad TrB B̂ad(ρ̂) ,

and thus the actual computation by teleportation proto-
col leaves on Alice’s side nearly the ideal output.

In this supplement, we would like to highlight two
points of the proof that QMIP = MIP∗: the conversion
into a three-round protocol, and the addition of two new
provers instead of reusing provers.

QMIP is the class of languages decidable by a
polynomial-time quantum verifier exchanging polynomi-
ally many quantum messages with a polynomial number
of quantum provers, who have unbounded computational
power and share entanglement but cannot communicate
among themselves. Kempe et al. have shown that any
QMIP protocol can be converted into a three-turn pro-
tocol in which the provers send a quantum message
to the verifier, the verifier broadcasts the result of a
random coin flip, the provers each send a second quan-
tum message, and then the verifier applies an efficient
measurement to decide whether to accept or reject.40
Beginning with this protocol transformation, our proof
adds two new provers, Alice and Bob. The classical
verifier, Eve, teleports both rounds of messages from the
original k provers to Alice, and then directs Alice and
Bob to run the original verifier’s quantum circuit.

A natural question is whether it is necessary to add
two new provers or if two of the provers already present
can be used for implementing verified quantum dynam-
ics. We conjecture that adding new provers is not nec-
essary. Broadbent et al., for example, have suggested
that a k-prover QMIP protocol can be converted to
a k-prover MIP∗ protocol deciding the same language,
and the scheme that they present indeed reuses the
first two provers to simulate the verifier’s quantum
computations.34 However, the analysis of this scheme
does not consider all ways in which provers can play
dishonestly.

In fact, any scheme with a structure along the lines we
have presented will be unsound—if it does not first con-
vert to a three-turn protocol or use more sophisticated
tricks. Here is a general counterexample. Begin with
an arbitrary QMIP protocol P, deciding a language L.
Modify the protocol by adding one new round at the end.
In this last round, the provers can each send classical
messages to the verifier, which the verifier simply broad-
casts back to all of the provers. The effect of this final
interaction is to allow the provers to communicate with
each other. (Since they share entanglement, they can
use quantum teleportation to communicate quantum in-
formation, if desired.) The modified protocol P ′ decides
the same language L, with the exact same completeness
and soundness parameters, though; communicating in
the last step does not help the provers cheat.

Convert the modified protocol, somehow, into an MIP∗

protocol P ′′ that uses the first two provers to simulate
the verifier’s quantum computations. In particular, they
simulate the final acceptance predicate, by some proce-
dure that has traps to detect cheating—in our scheme,
CHSH games or state or process tomography. The prob-
lem is that the last round of messages in P ′ is useless,
but in P ′′ the intercommunication allows the provers to
reveal to each other the traps set by the verifier. This
allows them to avoid the traps and cheat freely. P ′′ is
unsound.
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Converting to a three-turn protocol at the start de-
flects this general attack, as does using two fresh provers
to run the verifier’s quantum computation. Another way
to avoid the attack might be to refresh the verifier’s
secrets—resetting any traps and re-hiding any quantum

information—before revealing any message to a prover.
Any message between provers potentially carries infor-
mation that affects the security of the converted MIP∗

protocol differently from the original QMIP protocol.
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